17.4 C
New York
Monday, October 7, 2024

Electrical energy generated by upstream proton diffusion in two-dimensional nanochannels


  • Zhang, Z. et al. Rising hydrovoltaic know-how. Nat. Nanotechnol. 13, 1109–1119 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Hydrovoltaic know-how: from mechanism to purposes. Chem. Soc. Rev. 51, 4902–4927 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, H. et al. Hydrovoltaic electrical energy generator with hygroscopic supplies: a evaluate and new perspective. Adv. Mater. 36, 2301080 (2023).

  • Yin, J., Zhou, J., Fang, S. & Guo, W. Hydrovoltaic power on the way in which. Joule 4, 1852–1855 (2020).

    Article 

    Google Scholar
     

  • Xu, W. et al. A droplet-based electrical energy generator with excessive instantaneous energy density. Nature 578, 392–396 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Sparking potential over 1200 V by a falling water droplet. Sci. Adv. 9, eadi2993 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, G. et al. Water-evaporation-induced electrical energy with nanostructured carbon supplies. Nat. Nanotechnol. 12, 317–321 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, M. et al. Excessive evaporation price and electrical conductivity synergistically boosting porous rGO/CNT movie for water evaporation-driven electrical energy technology. Nano Vitality 116, 108771 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Deng, W. et al. Capillary entrance broadening for water-evaporation-induced electrical energy of 1 kilovolt. Vitality Environ. Sci. 16, 4442–4452 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lin, J. et al. All wood-based water evaporation-induced electrical energy generator. Adv. Funct. Mater. 2314231 (2024).

  • Huang, Y. et al. All-region-applicable, steady energy provide of graphene oxide composite. Vitality Environ. Sci. 12, 1848–1856 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Energy technology from ambient humidity utilizing protein nanowires. Nature 578, 550–554 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Bilayer of polyelectrolyte movies for spontaneous energy technology in air as much as an built-in 1,000 V output. Nat. Nanotechnol. 16, 811–819 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Sustainable moisture power. Nat. Rev. Mater. (2024).

  • Yin, J. et al. Waving potential in graphene. Nat. Commun. 5, 3582 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Electrical energy technology from water droplets by way of capillary infiltrating. Nano Vitality 48, 211–216 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Kinetic photovoltage alongside semiconductor-water interfaces. Nat. Commun. 12, 4998 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Passive gate-tunable kinetic photovoltage alongside semiconductor-water interfaces. Angew. Chem. Int. Ed. 62, e202218393 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. Hydrovoltaic power from water droplets: gadget configurations, mechanisms, and purposes. Droplet 2, e77 (2023).

    Article 

    Google Scholar
     

  • Ni, Okay. et al. Ion-diode-like heterojunction for enhancing electrical energy technology from water droplets by capillary infiltration. Adv. Mater. 35, 2305438 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Uneven charged conductive porous movies for electrical energy technology from water droplets by way of capillary infiltrating. ACS Appl. Mater. Interfaces 13, 17902–17909 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, H. et al. Identification of water-infiltration-induced electrical power technology by ionovoltaic impact in porous CuO nanowire movies. Vitality Environ. Sci. 13, 3432–3438 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bae, J., Yun, T. G., Suh, B. L., Kim, J. & Kim, I.-D. Self-operating transpiration-driven electrokinetic energy generator with a man-made hydrological cycle. Vitality Environ. Sci. 13, 527–534 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. An uneven hygroscopic construction for moisture-driven hygro-ionic electrical energy technology and storage. Adv. Mater. 34, 2201228 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Microbial biofilms for electrical energy technology from water evaporation and energy to wearables. Nat. Commun. 13, 4369 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, C. et al. Silk fibroin-regulated nanochannels for versatile hydrovoltaic ion sensing. Adv. Mater. 36, 2310260 (2024).

  • Ko, H. et al. Why does water in porous carbon generate electrical energy? Electrokinetic function of protons in a water droplet-induced hydrovoltaic system of hydrophilic porous carbon. J. Mater. Chem. A 11, 1148–1158 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hui, Z. et al. A self-powered nanogenerator for {the electrical} safety of built-in circuits from hint quantities of liquid. Nano-Micro Lett. 12, 5 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Qin, Y. et al. Fixed electrical energy technology in nanostructured silicon by evaporation-driven water circulate. Angew. Chem. Int. Ed. 132, 10706–10712 (2020).

    Article 

    Google Scholar
     

  • Liu, A. T. et al. Electrical power technology by way of reversible chemical doping on carbon nanotube fibers. Adv. Mater. 28, 9752–9757 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 9, 4166 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, F., Cheng, H., Zhang, Z., Jiang, L. & Qu, L. Direct energy technology from a graphene oxide movie beneath moisture. Adv. Mater. 27, 4351–4357 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, T. et al. Electrical energy technology by means of the direct interplay of pristine graphene-oxide with water molecules. Small 14, 1704473 (2018).

    Article 

    Google Scholar
     

  • Cheng, H. et al. Spontaneous energy supply in ambient air of a well-directionally lowered graphene oxide bulk. Vitality Environ. Sci. 11, 2839–2845 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ganeshan, Okay. et al. Construction and dynamics of aqueous electrolytes confined in 2D-TiO2/Ti3C2T2 MXene heterostructures. ACS Appl. Mater. Interfaces 12, 58378–58389 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganeshan, Okay. et al. Significance of nuclear quantum results on aqueous electrolyte transport beneath confinement in Ti3C2 MXenes. J. Chem. Principle Comput. 18, 6920–6931 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, M. et al. Fabrication of a wearable versatile sweat pH sensor based mostly on SERS-active Au/TPU electrospun nanofibers. ACS Appl. Mater. Interfaces 13, 51504–51518 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X.-S. et al. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing. Anal. Chem. 86, 12250–12257 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kunai, Y. et al. Remark of the Marcus inverted area of electron switch from uneven chemical doping of pristine (n, m) single-walled carbon nanotubes. J. Am. Chem. Soc. 139, 15328–15336 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ran, Y. et al. A miniature pH probe utilizing practical microfiber Bragg grating. Optics 1, 202–212 (2020).

    Article 

    Google Scholar
     

  • Alhabeb, M. et al. Tips for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nosé, S. A unified formulation of the fixed temperature molecular dynamics strategies. J. Chem. Phys. 81, 511–519 (1984).

    Article 

    Google Scholar
     

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, Okay. VMD: visible molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles