Zhang, Z. et al. Rising hydrovoltaic know-how. Nat. Nanotechnol. 13, 1109–1119 (2018).
Wang, X. et al. Hydrovoltaic know-how: from mechanism to purposes. Chem. Soc. Rev. 51, 4902–4927 (2022).
Lim, H. et al. Hydrovoltaic electrical energy generator with hygroscopic supplies: a evaluate and new perspective. Adv. Mater. 36, 2301080 (2023).
Yin, J., Zhou, J., Fang, S. & Guo, W. Hydrovoltaic power on the way in which. Joule 4, 1852–1855 (2020).
Xu, W. et al. A droplet-based electrical energy generator with excessive instantaneous energy density. Nature 578, 392–396 (2020).
Li, L. et al. Sparking potential over 1200 V by a falling water droplet. Sci. Adv. 9, eadi2993 (2023).
Xue, G. et al. Water-evaporation-induced electrical energy with nanostructured carbon supplies. Nat. Nanotechnol. 12, 317–321 (2017).
Wu, M. et al. Excessive evaporation price and electrical conductivity synergistically boosting porous rGO/CNT movie for water evaporation-driven electrical energy technology. Nano Vitality 116, 108771 (2023).
Deng, W. et al. Capillary entrance broadening for water-evaporation-induced electrical energy of 1 kilovolt. Vitality Environ. Sci. 16, 4442–4452 (2023).
Lin, J. et al. All wood-based water evaporation-induced electrical energy generator. Adv. Funct. Mater. 2314231 (2024).
Huang, Y. et al. All-region-applicable, steady energy provide of graphene oxide composite. Vitality Environ. Sci. 12, 1848–1856 (2019).
Liu, X. et al. Energy technology from ambient humidity utilizing protein nanowires. Nature 578, 550–554 (2020).
Wang, H. et al. Bilayer of polyelectrolyte movies for spontaneous energy technology in air as much as an built-in 1,000 V output. Nat. Nanotechnol. 16, 811–819 (2021).
Xu, J. et al. Sustainable moisture power. Nat. Rev. Mater. (2024).
Yin, J. et al. Waving potential in graphene. Nat. Commun. 5, 3582 (2014).
Li, J. et al. Electrical energy technology from water droplets by way of capillary infiltrating. Nano Vitality 48, 211–216 (2018).
Li, J. et al. Kinetic photovoltage alongside semiconductor-water interfaces. Nat. Commun. 12, 4998 (2021).
Li, J. et al. Passive gate-tunable kinetic photovoltage alongside semiconductor-water interfaces. Angew. Chem. Int. Ed. 62, e202218393 (2023).
Li, L. et al. Hydrovoltaic power from water droplets: gadget configurations, mechanisms, and purposes. Droplet 2, e77 (2023).
Ni, Okay. et al. Ion-diode-like heterojunction for enhancing electrical energy technology from water droplets by capillary infiltration. Adv. Mater. 35, 2305438 (2023).
Li, Y. et al. Uneven charged conductive porous movies for electrical energy technology from water droplets by way of capillary infiltrating. ACS Appl. Mater. Interfaces 13, 17902–17909 (2021).
Jin, H. et al. Identification of water-infiltration-induced electrical power technology by ionovoltaic impact in porous CuO nanowire movies. Vitality Environ. Sci. 13, 3432–3438 (2020).
Bae, J., Yun, T. G., Suh, B. L., Kim, J. & Kim, I.-D. Self-operating transpiration-driven electrokinetic energy generator with a man-made hydrological cycle. Vitality Environ. Sci. 13, 527–534 (2020).
Zhang, Y. et al. An uneven hygroscopic construction for moisture-driven hygro-ionic electrical energy technology and storage. Adv. Mater. 34, 2201228 (2022).
Liu, X. et al. Microbial biofilms for electrical energy technology from water evaporation and energy to wearables. Nat. Commun. 13, 4369 (2022).
Ge, C. et al. Silk fibroin-regulated nanochannels for versatile hydrovoltaic ion sensing. Adv. Mater. 36, 2310260 (2024).
Ko, H. et al. Why does water in porous carbon generate electrical energy? Electrokinetic function of protons in a water droplet-induced hydrovoltaic system of hydrophilic porous carbon. J. Mater. Chem. A 11, 1148–1158 (2023).
Hui, Z. et al. A self-powered nanogenerator for {the electrical} safety of built-in circuits from hint quantities of liquid. Nano-Micro Lett. 12, 5 (2020).
Qin, Y. et al. Fixed electrical energy technology in nanostructured silicon by evaporation-driven water circulate. Angew. Chem. Int. Ed. 132, 10706–10712 (2020).
Liu, A. T. et al. Electrical power technology by way of reversible chemical doping on carbon nanotube fibers. Adv. Mater. 28, 9752–9757 (2016).
Huang, Y. et al. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 9, 4166 (2018).
Zhao, F., Cheng, H., Zhang, Z., Jiang, L. & Qu, L. Direct energy technology from a graphene oxide movie beneath moisture. Adv. Mater. 27, 4351–4357 (2015).
Xu, T. et al. Electrical energy technology by means of the direct interplay of pristine graphene-oxide with water molecules. Small 14, 1704473 (2018).
Cheng, H. et al. Spontaneous energy supply in ambient air of a well-directionally lowered graphene oxide bulk. Vitality Environ. Sci. 11, 2839–2845 (2018).
Ganeshan, Okay. et al. Construction and dynamics of aqueous electrolytes confined in 2D-TiO2/Ti3C2T2 MXene heterostructures. ACS Appl. Mater. Interfaces 12, 58378–58389 (2020).
Ganeshan, Okay. et al. Significance of nuclear quantum results on aqueous electrolyte transport beneath confinement in Ti3C2 MXenes. J. Chem. Principle Comput. 18, 6920–6931 (2022).
Chung, M. et al. Fabrication of a wearable versatile sweat pH sensor based mostly on SERS-active Au/TPU electrospun nanofibers. ACS Appl. Mater. Interfaces 13, 51504–51518 (2021).
Zheng, X.-S. et al. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing. Anal. Chem. 86, 12250–12257 (2014).
Kunai, Y. et al. Remark of the Marcus inverted area of electron switch from uneven chemical doping of pristine (n, m) single-walled carbon nanotubes. J. Am. Chem. Soc. 139, 15328–15336 (2017).
Ran, Y. et al. A miniature pH probe utilizing practical microfiber Bragg grating. Optics 1, 202–212 (2020).
Alhabeb, M. et al. Tips for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).
Nosé, S. A unified formulation of the fixed temperature molecular dynamics strategies. J. Chem. Phys. 81, 511–519 (1984).
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).
Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
Humphrey, W., Dalke, A. & Schulten, Okay. VMD: visible molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).