21.4 C
New York
Saturday, October 12, 2024

Practical hydrogels for hepatocellular carcinoma: remedy, imaging, and in vitro mannequin | Journal of Nanobiotechnology


  • Chakraborty E, Sarkar D. Rising therapies for hepatocellular carcinoma (HCC). Cancers. 2022;14:2798.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertuccio P, Turati F, Carioli G, Rodriguez T, La Vecchia C, Malvezzi M, Negri E. International traits and predictions in hepatocellular carcinoma mortality. J Hepatol. 2017;67:302–9.

    Article 
    PubMed 

    Google Scholar
     

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71:209–49.

    Article 
    PubMed 

    Google Scholar
     

  • McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73:4–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. In: Sarkar D, Fisher PB, editors. Mechanisms and remedy of liver most cancers, vol. 149. Amsterdam: Elsevier; 2021. p. 1–61.

    Chapter 

    Google Scholar
     

  • Zheng Z, Ma M, Han X, Li X, Huang J, Zhao Y, Liu H, Kang J, Kong X, Solar G, et al. Idarubicin-loaded biodegradable microspheres improve sensitivity to anti-PD1 immunotherapy in transcatheter arterial chemoembolization of hepatocellular carcinoma. Acta Biomater. 2023;157:337–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demir T, Lee SS, Kaseb AO. Systemic remedy of liver most cancers. In: Fisher PB, Sarkar D, editors. Mechanisms and remedy of liver most cancers, vol. 149. Amsterdam: Elsevier; 2021. p. 257–94.

    Chapter 

    Google Scholar
     

  • Holzwanger DJ, Madoff DC. Position of interventional radiology within the administration of hepatocellular carcinoma: present standing. Chin Clin Oncol. 2018;7:49.

    Article 
    PubMed 

    Google Scholar
     

  • Chen X-L, Yu H-C, Fan Q-G, Yuan Q, Jiang W-Okay, Rui S-Z, Zhou W-C. Comparative effectiveness of interventional therapeutic modalities for unresectable hepatocellular carcinoma: a scientific evaluation and community meta-analysis. Oncol Lett. 2022;24:1.

    Article 

    Google Scholar
     

  • Liapi E, Geschwind J-FH. Intra-arterial therapies for hepatocellular carcinoma: the place can we stand? Ann Surg Oncol. 2010;17:1234–46.

    Article 
    PubMed 

    Google Scholar
     

  • Makary MS, Ramsell S, Miller E, Beal EW, Dowell JD. Hepatocellular carcinoma locoregional therapies: outcomes and future horizons. World J Gastroenterol. 2021;27:7462–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah RP, Brown KT, Sofocleous CT. Arterially directed therapies for hepatocellular carcinoma. Am J Roentgenol. 2011;197:W590–602.

    Article 

    Google Scholar
     

  • Couri T, Pillai A. Targets and targets for customized remedy for HCC. Hep Intl. 2019;13:125–37.

    Article 

    Google Scholar
     

  • Raoul J-L, Forner A, Bolondi L, Cheung TT, Kloeckner R, de Baere T. Up to date use of TACE for hepatocellular carcinoma therapy: how and when to make use of it primarily based on medical proof. Most cancers Deal with Rev. 2019;72:28–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruix J, Llovet JM. Prognostic prediction and therapy technique in hepatocellular carcinoma. Hepatology. 2002;35:519–24.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y-P, Zhang J-L, Zou Y, Wu Y-L. Latest advances on polymeric beads or hydrogels as embolization brokers for improved transcatheter arterial chemoembolization (TACE). Entrance Chem. 2019;7:408.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Llovet JM, Bruix J, Barcelona Clinic Liver Most cancers Group. Systematic evaluation of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37:429–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • European Affiliation for the Examine of the Liver. EASL medical apply pointers: administration of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.

    Article 

    Google Scholar
     

  • Chang Y, Jeong SW, Jang JY, Kim YJ. Latest updates of transarterial chemoembolilzation in hepatocellular carcinoma. Int J Mol Sci. 2020;21:8165.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marelli L, Stigliano R, Triantos C, Senzolo M, Cholongitas E, Davies N, Tibballs J, Meyer T, Patch DW, Burroughs AK. Transarterial remedy for hepatocellular carcinoma: which approach is more practical? A scientific evaluation of cohort and randomized research. Cardiovasc Intervent Radiol. 2007;30:6–25.

    Article 
    PubMed 

    Google Scholar
     

  • Varela M, Actual MI, Burrel M, Forner A, Sala M, Brunet M, Ayuso C, Castells L, Montana X, Llovet JM, Bruix J. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46:474–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pesapane F, Nezami N, Patella F, Geschwind JF. New ideas in embolotherapy of HCC. Med Oncol. 2017;34:1–8.

    Article 

    Google Scholar
     

  • Coldwell DM, Stokes KR, Yakes WF. Embolotherapy: brokers, medical purposes, and strategies. Radiographics. 1994;14:623–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia G, Van Valkenburgh J, Chen AZ, Chen Q, Li J, Zuo C, Chen Okay. Latest advances and purposes of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. Wiley Interdiscip Rev-Nanomed Nanobiotechnol. 2022;14: e1749.

    Article 
    PubMed 

    Google Scholar
     

  • Perez-Lopez A, Martin-Sabroso C, Gomez-Lazaro L, Torres-Suarez AI, Aparicio-Blanco J. Embolization remedy with microspheres for the therapy of liver most cancers: state-of-the-art of medical translation. Acta Biomater. 2022;149:1–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho T-C, Chang C-C, Chan H-P, Chung T-W, Shu C-W, Chuang Okay-P, Duh T-H, Yang M-H, Tyan Y-C. Hydrogels: properties and purposes in biomedicine. Molecules. 2022;27:2902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin S, Wan J, Meng L, Huang X, Guo J, Liu L, Wang C. Biodegradation and toxicity of protease/redox/pH stimuli-responsive PEGlated PMAA nanohydrogels for focusing on drug supply. ACS Appl Mater Interfaces. 2015;7:19843–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Xue Y, Lin Okay, Lu J, Chang J, Solar J. The enhancement of bone regeneration by a mix of osteoconductivity and osteostimulation utilizing beta-CaSiO3/beta-Ca-3(PO4)(2) composite bioceramics. Acta Biomater. 2012;8:350–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng M, Nair LS, Nukavarapu SR, Jiang T, Kanner WA, Li X, Kumbar SG, Weikel AL, Krogman NR, Allcock HR, Laurencin CT. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials. 2010;31:4898–908.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ko G, Choi JW, Lee N, Kim D, Hyeon T, Kim H-C. Latest progress in liquid embolic brokers. Biomaterials. 2022;287:121634.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lencioni R, de Baere T, Soulen MC, Rilling WS, Geschwind J-FH. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: a scientific evaluation of efficacy and security knowledge. Hepatology. 2016;64:106–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyayama S, Matsui O, Yamashiro M, Ryu Y, Takata H, Takeda T, Aburano H, Shigenari N. Iodized oil accumulation within the hypovascular tumor portion of early-stage hepatocellular carcinoma after ultraselective transcatheter arterial chemoembolization. Hep Intl. 2007;1:451–9.

    Article 

    Google Scholar
     

  • Chen C-S, Li F-Okay, Guo C-Y, Xiao J-C, Hu H-T, Cheng H-T, Zheng L, Zong D-W, Ma J-L, Jiang L, Li H-L. Tumor vascularity and lipiodol deposition as early radiological markers for predicting danger of illness development in sufferers with unresectable hepatocellular carcinoma after transarterial chemoembolization. Oncotarget. 2016;7:7241–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, He Y, Shen M, Huang L, Ding L, Hu J, Dong Y, Fu H, Wang Q, Solar Y, et al. Precision embolism: biocompatible temperature-sensitive hydrogels as novel embolic supplies for each mainstream and peripheral vessels. Adv Funct Mater. 2021;31:2011170.

    Article 
    CAS 

    Google Scholar
     

  • Liu M, Wang Y, Chen Y, Li L, Solar Y, Li Y, Yuan Y, Lu P, Zhang W, Pang P, et al. Solvent alternate induced in situ fashioned hydrogel as liquid embolic brokers. Adv Funct Mater. 2023;33:2305153.

    Article 
    CAS 

    Google Scholar
     

  • Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Professional Rev Med Dev. 2011;8:607–26.

    Article 

    Google Scholar
     

  • Nie J, Pei B, Wang Z, Hu Q. Building of ordered construction in polysaccharide hydrogel: a evaluation. Carbohydr Polym. 2019;205:225–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar Z, Track C, Wang C, Hu Y, Wu J. Hydrogel-based managed drug supply for most cancers therapy: a evaluation. Mol Pharm. 2020;17:373–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Ko G, Choi JW, Shin Okay, Kim YG, Kang T, Kim D, Lee N, Kim H-C, Hyeon T. In vivo sol-gel response of tantalum alkoxide for endovascular embolization. Adv Healthc Mater. 2022;11:2101908.

    Article 
    CAS 

    Google Scholar
     

  • Li H, Qian Okay, Zhang H, Li L, Yan L, Geng S, Zhao H, Zhang H, Xiong B, Li Z, et al. Pickering gel emulsion of lipiodol stabilized by bushy nanogels for intra-artery embolization antitumor remedy. Chem Eng J. 2021;418:129534.

    Article 
    CAS 

    Google Scholar
     

  • Go G, Yoo A, Kim Tien N, Nan M, Darmawan BA, Zheng S, Kang B, Kim C-S, Bang D, Lee S, et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization remedy of liver most cancers. Sci Adv. 2022;8: eabq8545.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam M, Reales-Calderon JA, Ow JR, Adriani G, Pavesi A. In vitro 3D liver tumor microenvironment fashions for immune cell remedy optimization. APL Bioeng. 2021;5:041502.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gyles DA, Castro LD, Silva JOC Jr, Ribeiro-Costa RM. A evaluation of the designs and outstanding biomedical advances of pure and artificial hydrogel formulations. Eur Polym J. 2017;88:373–92.

    Article 
    CAS 

    Google Scholar
     

  • Ma J, Wang B, Shao H, Zhang S, Chen X, Li F, Liang W. Hydrogels for localized chemotherapy of liver most cancers: a potential technique for improved and secure liver most cancers therapy. Drug Deliv. 2022;29:1457–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking methods of biomedical hydrogels. Biomater Sci. 2019;7:843–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu L, Yuan S, Wang J, Shen Y, Deng S, Xie L, Yang Q. The formation mechanism of hydrogels. Curr Stem Cell Res Ther. 2018;13:490–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and properties of bodily cross-linked hydrogels primarily based on pure polymers. Polym Rev. 2023;63:574–612.

    Article 
    CAS 

    Google Scholar
     

  • Zhang YS, Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356: eaaf3627.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh Okay, Ramesh S. Basic ideas of hydrogels: synthesis, properties, and their purposes. Polymers. 2020;12:2702.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Jiang W, Li J, Ahommed MS, Wang C, Ji X, Liu Y, Yang G, Ni Y, Lyu G. Zinc-ion engineered plant-based multifunctional hydrogels for versatile wearable pressure Sensors, Bio-electrodes and Zinc-ion hybrid capacitors. Chem Eng J. 2023;465:142917.

    Article 
    CAS 

    Google Scholar
     

  • Pawar SN, Edgar KJ. Alginate derivatization: a evaluation of chemistry, properties and purposes. Biomaterials. 2012;33:3279–305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar A, Sah DK, Khanna Okay, Rai Y, Yadav AK, Ansari MS, Bhatt AN. A calcium and zinc composite alginate hydrogel for pre-hospital hemostasis and wound care. Carbohydr Polym. 2023;299:120186.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bissantz C, Kuhn B, Stahl M. A medicinal chemist’s information to molecular interactions. J Med Chem. 2010;53:5061–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li S, Gao Y, Jiang H, Duan L, Gao G. Powerful, sticky and remoldable hydrophobic affiliation hydrogel regulated by polysaccharide and sodium dodecyl sulfate as emulsifiers. Carbohyd Polym. 2018;201:591–8.

    Article 
    CAS 

    Google Scholar
     

  • Demott CJ, Jones MR, Chesney CD, Yeisley DJ, Culibrk RA, Hahn MS, Grunlan MA. Extremely-high modulus hydrogels mimicking cartilage of the human physique. Macromol Biosci. 2022;22:2200283.

    Article 
    CAS 

    Google Scholar
     

  • Fu L, Li L, Bian Q, Xue B, Jin J, Li J, Cao Y, Jiang Q, Li H. Cartilage-like protein hydrogels engineered through entanglement. Nature. 2023;618:740.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan MJ, Zhang J, Guo Q. Covalent/crystallite cross-linked co-network hydrogels: an environment friendly and easy technique for mechanically sturdy and hard hydrogels. Chem Eng J. 2016;301:92–102.

    Article 
    CAS 

    Google Scholar
     

  • Hassan CM, Peppas NA. Construction and morphology of freeze/thawed PVA hydrogels. Macromolecules. 2000;33:2472–9.

    Article 
    CAS 

    Google Scholar
     

  • Muir VG, Burdick JA. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem Rev. 2021;121:10908–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Fu H, Li Z, Huang J, Xu Z, Lai Y, Qian X, Zhang S. Hydrogel supplies for sustainable water assets harvesting & therapy: synthesis, mechanism and purposes. Chem Eng J. 2022;439:135756.

    Article 
    CAS 

    Google Scholar
     

  • Singh B, Pal L. Radiation crosslinking polymerization of sterculia polysaccharide-PVA-PVP for making hydrogel wound dressings. Int J Biol Macromol. 2011;48:501–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahajpal Okay, Shekhar S, Kumar A, Sharma B, Meena MK, Bhagi AK, Sharma S. Dynamic protein and polypeptide hydrogels primarily based on Schiff base co-assembly for biomedicine. J Mater Chem B. 2022;10:3173–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mo C, Xiang L, Chen Y. Advances in injectable and self-healing polysaccharide hydrogel primarily based on the Schiff base response. Macromol Speedy Commun. 2021;42:2100025.

    Article 
    CAS 

    Google Scholar
     

  • Huang Y, Mu L, Zhao X, Han Y, Guo B. Bacterial growth-induced tobramycin sensible launch self-healing hydrogel for pseudomonas aeruginosa-infected burn wound therapeutic. ACS Nano. 2022;16:13022–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD. Good hydrogels in tissue engineering and regenerative medication. Supplies. 2019;12:3323.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang W-W, Yang G-Y, Fan Z-H, Chen Z-C, Hu X-L, Zhan Z, Hussain I, Lu Y, He T, Tan B-E. Conjugated cross-linked phosphine as broadband gentle or sunlight-driven photocatalyst for large-scale atom switch radical polymerization. Nat Commun. 2023;14:2891.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu J, Wang Okay, Fan C, Zhao X, Gao J, Jing W, Zhang X, Li J, Li Y, Yang J, Liu W. An ultrasoft self-fused supramolecular polymer hydrogel for fully stopping postoperative tissue adhesion. Adv Mater. 2021;33:2008395.

    Article 
    CAS 

    Google Scholar
     

  • Meng X, Edgar KJ. “Click on” reactions in polysaccharide modification. Prog Polym Sci. 2016;53:52–85.

    Article 
    CAS 

    Google Scholar
     

  • Lueckgen A, Garske DS, Ellinghaus A, Desai RM, Stafford AG, Mooney DJ, Duda GN, Cipitria A. Hydrolytically-degradable click-crosslinked alginate hydrogels. Biomaterials. 2018;181:189–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, exercise regulation, and purposes. Chem Rev. 2019;119:4357–412.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Lu F, Liu Y. A evaluation of the mechanism, properties, and purposes of hydrogels ready by enzymatic cross-linking. J Agric Meals Chem. 2023;71:10238–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim M, Kim H, Lee Y-s, Lee S, Kim S-E, Lee U-J, Jung S, Park C-G, Hong J, Doh J, et al. Novel enzymatic cross-linking-based hydrogel nanofilm caging system on pancreatic beta cell spheroid for long-term blood glucose regulation. Sci Adv. 2021;7: eabf7832.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei P, Yu X, Fang Y, Wang L, Zhang H, Zhu C, Cai J. Sturdy and hard cellulose hydrogels through resolution annealing and twin cross-linking. Small. 2023;19:2301204.

    Article 
    CAS 

    Google Scholar
     

  • Yuan Y, Shen S, Fan D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound therapeutic: form adaptability, injectable self-healing property and enhanced adhesion. Biomaterials. 2021;276:120838.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao L, Shi Z, Solar X, Yu Y, Wang X, Wang H, Li T, Zhang H, Zhang X, Wang F, et al. Pure dual-crosslinking bioadhesive hydrogel for corneal regeneration in large-size defects. Adv Healthc Mater. 2022;11:2201576.

    Article 
    CAS 

    Google Scholar
     

  • Gosecka M, Gosecki M, Jaworska-Krych D. Hydrophobized hydrogels: development methods, properties, and biomedical purposes. Adv Funct Mater. 2023;33:2212302.

    Article 
    CAS 

    Google Scholar
     

  • Narayanaswamy R, Torchilin VP. Hydrogels and their purposes in focused drug supply. Molecules. 2019;24:1117–50.

    Article 

    Google Scholar
     

  • Zhao J, Wang L, Zhang H, Liao B, Li Y. Progress of analysis in in situ sensible hydrogels for native antitumor remedy: a evaluation. Pharmaceutics. 2028;2022:14.


    Google Scholar
     

  • Radu ER, Semenescu A, Voicu SI. Latest advances in stimuli-responsive doxorubicin supply methods for liver most cancers remedy. Polymers. 2022;14:5249.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu J-Q, Wu H, Li Z-L, Xu X-F, Xing H, Wang M-D, Jia H-D, Liang L, Li C, Solar L-Y, et al. Responsive hydrogels primarily based on triggered click on reactions for liver most cancers. Adv Mater. 2022;34:2201651.

    Article 
    CAS 

    Google Scholar
     

  • Mo C, Luo R, Chen Y. Advances within the stimuli-responsive injectable hydrogel for managed launch of medicine. Macromol Speedy Commun. 2022;43:2200007.

    Article 
    CAS 

    Google Scholar
     

  • Hou S, Wang X, Park S, Jin X, Ma PX. Speedy Self-integrating, injectable hydrogel for tissue complicated regeneration. Adv Healthc Mater. 2015;4:1491–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng J, Yang X, Huang J, Tuo Z, Hu Y, Liao Z, Tian Y, Deng S, Deng Y, Zhou Z, et al. Ferroptosis-enhanced immunotherapy with an injectable dextran-chitosan hydrogel for the therapy of malignant ascites in hepatocellular carcinoma. Adv Sci. 2023;10:2300517.

    Article 
    CAS 

    Google Scholar
     

  • Zhan J, Wu Y, Wang H, Liu J, Ma Q, Xiao Okay, Li Z, Li J, Luo F, Tan H. An injectable hydrogel with pH-sensitive and self-healing properties primarily based on 4armPEGDA and N-carboxyethyl chitosan for native therapy of hepatocellular carcinoma. Int J Biol Macromol. 2020;163:1208–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Zhang HJ, Yang Y, Chen Y, Zhu X, You X. Biopolymer-based self-healing hydrogels: a brief evaluation. Big. 2023;16:100188.

    Article 
    CAS 

    Google Scholar
     

  • Qu J, Zhao X, Ma PX, Guo B. pH-responsive self-healing injectable hydrogel primarily based on N-carboxyethyl chitosan for hepatocellular carcinoma remedy. Acta Biomater. 2017;58:168–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng Z-M, Mo N, Zeng J, Ma F-C, Jiang Y-F, Huang H-S, Liao X-W, Zhu G-Z, Ma J, Peng T. Advances in postoperative adjuvant remedy for major liver most cancers. World J Gastrointest Oncol. 2022;14:1604–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang J, Zhang R, Guo M, Shao L, Liu Y, Zhao Y, Zhang S, Wu Y, Chen C. Nucleosome-inspired nanocarrier obtains encapsulation effectivity enhancement and unintended effects discount in chemotherapy by utilizing fullerenol assembled with doxorubicin. Biomaterials. 2018;167:205–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mittra I, Pal Okay, Pancholi N, Shaikh A, Rane B, Tidke P, Kirolikar S, Khare NK, Agrawal Okay, Nagare H, Nair NK. Prevention of chemotherapy toxicity by brokers that neutralize or degrade cell-free chromatin. Ann Oncol. 2017;28:2119–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolinsky JB, Colson YL, Grinstaff MW. Native drug supply methods for most cancers therapy: gels, nanoparticles, polymeric movies, rods, and wafers. J Management Launch. 2012;159:14–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Majumder P, Baxa U, Walsh STR, Schneider JP. Design of a multicompartment hydrogel that facilitates time-resolved supply of mixture remedy and synergized killing of glioblastoma. Angew Chem-Int Ed. 2018;57:15040–4.

    Article 
    CAS 

    Google Scholar
     

  • Kim DY, Kwon DY, Kwon JS, Park JH, Park SH, Oh HJ, Kim JH, Min BH, Park Okay, Kim MS. Synergistic anti-tumor exercise by way of combinational intratumoral injection of an in-situ injectable drug depot. Biomaterials. 2016;85:232–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi Y, Min H, Mujeeb A, Zhang Y, Han X, Zhao X, Anderson GJ, Zhao Y, Nie G. Injectable hexapeptide hydrogel for localized chemotherapy prevents breast most cancers recurrence. ACS Appl Mater Interfaces. 2018;10:6972–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Grazie M, Biagini MR, Tarocchi M, Polvani S, Galli A. Chemotherapy for hepatocellular carcinoma: the current and the longer term. World J Hepatol. 2017;9:907–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varela-Lopez A, Battino M, Navarro-Hortal MD, Giampieri F, Forbes-Hernandez TY, Romero-Marquez JM, Collado R, Quiles JL. An replace on the mechanisms associated to cell demise and toxicity of doxorubicin and the protecting position of vitamins. Meals Chem Toxicol. 2019;134:110834.

    Article 
    PubMed 

    Google Scholar
     

  • Wan J, Geng S, Zhao H, Peng X, Zhou Q, Li H, He M, Zhao Y, Yang X, Xu H. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration. J Management Launch. 2016;235:328–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Surprising therapeutic results of cisplatin. Metallomics. 2019;11:1182–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao X, Panichpisal Okay, Kurtzman N, Nugent Okay. Cisplatin nephrotoxicity: a evaluation. Am J Med Sci. 2007;334:115–24.

    Article 
    PubMed 

    Google Scholar
     

  • Chen J, Wang D, Wang L-H, Liu W, Chiu A, Shariati Okay, Liu Q, Wang X, Zhong Z, Webb J, et al. An adhesive hydrogel with “load-sharing” impact as tissue bandages for drug and cell supply. Adv Mater. 2020;32:2001628.

    Article 
    CAS 

    Google Scholar
     

  • Han Z, Li B, Wang J, Zhang X, Li Z, Dai L, Cao M, Jiang J. Norcantharidin inhibits SK-N-SH neuroblastoma cell progress by induction of autophagy and apoptosis. Technol Most cancers Res Deal with. 2017;16:33–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X-Y, Guan Q-X, Shang Y-Z, Wang Y-H, Lv S-W, Yang Z-X, Wang R, Feng Y-F, Li W-N, Li Y-J. Steel-organic framework IRMOFs coated with a temperature-sensitive gel delivering norcantharidin to deal with liver most cancers. World J Gastroenterol. 2021;27:4208–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Z-L, Yang Y-X, Ding J, Li Y-C, Miao Z-H. Triptolide: structural modifications, structure-activity relationships, bioactivities, medical growth and mechanisms. Nat Prod Rep. 2012;29:457–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ling D, Xia H, Park W, Hackett MJ, Track C, Na Okay, Hui KM, Hyeon T. pH-sensitive nanoformulated triptolide as a focused therapeutic technique for hepatocellular carcinoma. ACS Nano. 2014;8:8027–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, Liu X, Zhang P, Liu Y, Ran W, Cai Y, Wang J, Zhai Y, Wang G, Ding Y, Li Y. Injectable peptide hydrogel as intraperitoneal triptolide depot for the therapy of orthotopic hepatocellular carcinoma. Acta Pharm Sin B. 2019;9:1050–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, et al. The multifaceted position of curcumin in superior nanocurcumin type within the therapy and administration of power problems. Molecules. 2021;26:7109.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanafy NAN, Leporatti S, El-Kemary M. Mucoadhesive curcumin crosslinked carboxy methyl cellulose would possibly improve inhibitory effectivity for liver most cancers therapy. Mater Sci Eng C-Mater Biol Appl. 2020;116:111119.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koka Okay, Verma A, Dwarakanath BS, Papineni RVL. Technological developments in exterior beam radiation remedy (EBRT): an indispensable software for most cancers therapy. Most cancers Manag Res. 2022;14:1421–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baskar R, Lee KA, Yeo R, Yeoh Okay-W. Most cancers and radiation remedy: present advances and future instructions. Int J Med Sci. 2012;9:193–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohan V, Bruin NM, van de Kamer JB, Sonke JJ, Vogel WV. The growing potential of nuclear medication imaging for the analysis and discount of regular tissue toxicity from radiation remedies. Eur J Nucl Med Mol Imaging. 2021;48:3762–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho S, Lau WY, Leung TW, Johnson PJ. Inside radiation remedy for sufferers with major or metastatic hepatic most cancers: a evaluation. Most cancers. 1998;83:1894–907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin WY, Tsai SC, Hsieh JF, Wang SJ. Results of Y-90-microspheres on liver tumors: comparability of intratumoral injection methodology and intra-arterial injection methodology. J Nucl Med. 2000;41:1892–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Hwang H, Kim KI, Kwon J, Kim BS, Jeong H-S, Jang SJ, Oh P-S, Park HS, Lim ST, Sohn M-H, Jeong H-J. I-131-labeled chitosan hydrogels for radioembolization: a preclinical examine in small animals. Nucl Med Biol. 2017;52:16–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kennedy A. Radioembolization of hepatic tumors. J Gastrointest Oncol. 2014;5:178–89.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee IJ, Seong J. The optimum choice of radiotherapy therapy for hepatocellular carcinoma. Intestine Liver. 2012;6:139–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karpov T, Postovalova A, Akhmetova D, Muslimov AR, Eletskaya E, V. Zyuzin M, Timin AS,. Common chelator-free radiolabeling of natural and inorganic-based nanocarriers with diagnostic and therapeutic isotopes for inner radiotherapy. Chem Mater. 2022. https://doi.org/10.1021/acs.chemmater.2c01507.

    Article 

    Google Scholar
     

  • Peng C-L, Shih Y-H, Liang Okay-S, Chiang P-F, Yeh C-H, Tang IC, Yao C-J, Lee S-Y, Luo T-Y, Shieh M-J. Improvement of in situ forming thermosensitive hydrogel for radiotherapy mixed with chemotherapy in a mouse mannequin of hepatocellular carcinoma. Mol Pharm. 2013;10:1854–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Focused radionuclide remedy of human tumors. Int J Mol Sci. 2016;17:33.

    Article 

    Google Scholar
     

  • Lee EJ, Chung HW, Jo J-H, So Y. Radioembolization for the therapy of major and metastatic liver cancers. Nucl Med Mol Imaging. 2019;53:367–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher DR. Radiation security for yttrium-90-polymer composites (RadioGel (TM)) in remedy of strong tumors. Well being Phys. 2021;120:510–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larson SM, Carrasquillo JA, Cheung N-KV, Press OW. Radioimmunotherapy of human tumours. Nat Rev Most cancers. 2015;15:347–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You J, Zhang R, Xiong C, Zhong M, Melancon M, Gupta S, Nick AM, Sood AK, Li C. Efficient photothermal chemotherapy utilizing doxorubicin-loaded gold nanospheres that concentrate on EphB4 receptors in tumors. Can Res. 2012;72:4777–86.

    Article 
    CAS 

    Google Scholar
     

  • Xi D, Xiao M, Cao J, Zhao L, Xu N, Lengthy S, Fan J, Shao Okay, Solar W, Yan X, Peng X. NIR light-driving barrier-free group rotation in nanoparticles with an 88.3% photothermal conversion effectivity for photothermal remedy. Adv Mater. 2020;32:1907855.

    Article 
    CAS 

    Google Scholar
     

  • Chen Q, Wang C, Zhan Z, He W, Cheng Z, Li Y, Liu Z. Close to-infrared dye certain albumin with separated imaging and remedy wavelength channels for imaging-guided photothermal remedy. Biomaterials. 2014;35:8206–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Z, Yan Y, Wang L, Zhang Q, Cheng Y. Melanin-like nanoparticles adorned with an autophagy-inducing peptide for environment friendly focused photothermal remedy. Biomaterials. 2019;203:63–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng L, Zhang F, Wang S, Pan X, Han S, Liu S, Ma J, Wang H, Shen H, Liu H, Yuan Q. Activation of prodrugs by NIR-triggered launch of exogenous enzymes for locoregional chemo-photothermal remedy. Angew Chem-Int Ed. 2019;58:7728–32.

    Article 
    CAS 

    Google Scholar
     

  • Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Natural molecule-based photothermal brokers: an increasing photothermal remedy universe. Chem Soc Rev. 2018;47:2280–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong Q, Wang X, Hu X, Xiao L, Zhang L, Track L, Xu M, Zou Y, Chen L, Chen Z, Tan W. Simultaneous software of photothermal remedy and an anti-inflammatory prodrug utilizing pyrene-aspirin-loaded gold nanorod graphitic nanocapsules. Angew Chem-Int Ed. 2018;57:177–81.

    Article 
    CAS 

    Google Scholar
     

  • Jin R, Yang J, Zhao D, Hou X, Li C, Chen W, Zhao Y, Yin Z, Liu B. Hole gold nanoshells-incorporated injectable genetically engineered hydrogel for sustained chemo-photothermal remedy of tumor. J Nanobiotechnol. 2019;17:1–6.

    Article 

    Google Scholar
     

  • Siregar S, Oktamuliani S, Saijo Y. A theoretical mannequin of laser heating carbon nanotubes. Nanomaterials. 2018;8:580.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao M-Y, Lai P-S, Yu H-P, Lin H-P, Huang C-C. Progressive ligand-assisted synthesis of NIR-activated iron oxide for most cancers theranostics. Chem Commun. 2012;48:5319–21.

    Article 
    CAS 

    Google Scholar
     

  • Dang W, Chen W-C, Ju E, Xu Y, Li Okay, Wang H, Wang Okay, Lv S, Shao D, Tao Y, Li M. 3D printed hydrogel scaffolds combining glutathione depletion-induced ferroptosis and photothermia-augmented chemodynamic remedy for effectively inhibiting postoperative tumor recurrence. J Nanobiotechnol. 2022;20:266.

    Article 
    CAS 

    Google Scholar
     

  • Huang S, Ma Z, Solar C, Zhou Q, Li Z, Wang S, Yan Q, Liu C, Hou B, Zhang C. An injectable thermosensitive hydrogel loaded with a theranostic nanoprobe for synergistic chemo-photothermal remedy for multidrug-resistant hepatocellular carcinoma. J Mater Chem B. 2022;10:2828–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai W, Gao H, Chu C, Wang X, Wang J, Zhang P, Lin G, Li W, Liu G, Chen X. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided most cancers remedy. ACS Appl Mater Interfaces. 2017;9:2040–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng Okay, Hou Z, Deng X, Yang P, Li C, Lin J. Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic remedy primarily based on a indocyanine-green-attached W18O49 nanostructure. Adv Funct Mater. 2015;25:7280–90.

    Article 
    CAS 

    Google Scholar
     

  • Sohretoglu D, Huang S. Ganoderma lucidum polysaccharides as an anti-cancer agent. Anticancer Brokers Med Chem. 2018;18:667–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia Q-H, Lu C-T, Tong M-Q, Yue M, Chen R, Zhuge D-L, Yao Q, Xu H-L, Zhao Y-Z. Ganoderma lucidum polysaccharides improve the abscopal impact of photothermal remedy in hepatoma-bearing mice by way of immunomodulatory, anti-proliferative, pro-apoptotic and anti-angiogenic. Entrance Pharmacol. 2021;12:648708.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noh S-H, Moon SH, Shin T-H, Lim Y, Cheon J. Latest advances of magneto-thermal capabilities of nanoparticles: from design ideas to biomedical purposes. Nano Immediately. 2017;13:61–76.

    Article 
    CAS 

    Google Scholar
     

  • Hauser AK, Wydra RJ, Stocke NA, Anderson KW, Hilt JZ. Magnetic nanoparticles and nanocomposites for distant managed therapies. J Management Launch. 2015;219:76–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johannsen M, Gneueckow U, Thiesen B, Taymoorian Okay, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, Wust P. Thermotherapy of prostate most cancers utilizing magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52:1653–62.

    Article 
    PubMed 

    Google Scholar
     

  • van Landeghem FKH, Maier-Hauff Okay, Jordan A, Hoffmann Okay-T, Gneveckow U, Scholz R, Thiesen B, Brueck W, von Deimling A. Publish-mortem research in glioblastoma sufferers handled with thermotherapy utilizing magnetic nanoparticles. Biomaterials. 2009;30:52–7.

    Article 
    PubMed 

    Google Scholar
     

  • Mueller S. Magnetic fluid hyperthermia remedy for malignant mind tumors-an moral dialogue. Nanomed-Nanotechnol Biol Med. 2009;5:387–93.

    Article 
    CAS 

    Google Scholar
     

  • Pan J, Xu Y, Wu Q, Hu P, Shi J. Delicate magnetic hyperthermia-activated innate immunity for liver most cancers remedy. J Am Chem Soc. 2021;143:8116–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian Okay-Y, Track Y, Yan X, Dong L, Xue J, Xu Y, Wang B, Cao B, Hou Q, Peng W, et al. Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials. 2020;259:120299.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Track Y, Yan X, Dong L, Xu Y, Xuan S, Shu Q, Cao B, Hu J, Xing H, et al. Injectable magnetic montmorillonite colloidal gel for the postoperative therapy of hepatocellular carcinoma. J Nanobiotechnol. 2022;20:381.

    Article 
    CAS 

    Google Scholar
     

  • Yan X, Solar T, Track Y, Peng W, Xu Y, Luo G, Li M, Chen S, Fang W-W, Dong L, et al. In situ thermal-responsive magnetic hydrogel for multidisciplinary remedy of hepatocellular carcinoma. Nano Lett. 2022;22:2251–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang W, Ling S, Li C, Omenetto FG, Kaplan DL. Silkworm silk-based supplies and units generated utilizing bio-nanotechnology. Chem Soc Rev. 2018;47:6486–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Guo J, Zhou L, Ye C, Omenetto FG, Kaplan DL, Ling S. Design, fabrication, and performance of silk-based nanomaterials. Adv Funct Mater. 2018;28:1805305.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seib FP, Pritchard EM, Kaplan DL. Self-assembling doxorubicin silk hydrogels for the focal therapy of major breast most cancers. Adv Funct Mater. 2013;23:58–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribeiro VP, Silva-Correia J, Goncalves C, Pina S, Radhouani H, Montonen T, Hyttinen J, Roy A, Oliveira AL, Reis RL, Oliveira JM. Quickly responsive silk fibroin hydrogels as a synthetic matrix for the programmed tumor cells demise. PLoS ONE. 2018;13: e0194441.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Chu Y, Qian H, Qian L, Shao J, Xu Q, Yu L, Li R, Zhang Q, Wu F, et al. Antitumor exercise of thermosensitive hydrogels packaging gambogic acid nanoparticles and tumor-penetrating peptide iRGD in opposition to gastric most cancers. Int J Nanomed. 2020;15:735–47.

    Article 
    CAS 

    Google Scholar
     

  • Huan L, Liang L-H, He X-H. Position of microRNAs in inflammation-associated liver most cancers. Most cancers Biol Med. 2016;13:407–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edmondson HA, Peters RL. Tumors of the liver: pathologic options. Semin Roentgenol. 1983;18:75–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, Pikarsky E, Zhu AX, Finn RS. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19:151–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirchhammer N, Trefny MP, Maur PAD, Laubli H, Zippelius A. Mixture most cancers immunotherapies: rising therapy methods tailored to the tumor microenvironment. Sci Transl Med. 2022;14: eabo3605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Q, Wang Y, Zhao B, Chen H, Cai Z, Zheng Y, Zeng Y, Zhang D, Liu X. Neoantigen immunotherapeutic-gel mixed with TIM-3 blockade successfully restrains orthotopic hepatocellular carcinoma development. Nano Lett. 2022;22:2048–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y, Chen L, Liu M, Ma Z, Zhou C, Yao Z, Zhang S, Track C, Wang Z, Zhu X, et al. Multifunctional immunotherapeutic gel prevented postoperative recurrence of hepatocellular carcinoma. Chem Eng J. 2023;457:141124.

    Article 
    CAS 

    Google Scholar
     

  • Shi D, Zhang H, Zhang H, Li L, Li S, Zhao Y, Zheng C, Nie G, Yang X. The synergistic blood-vessel-embolization of coagulation fusion protein with temperature delicate nanogels in interventional therapies on hepatocellular carcinoma. Chem Eng J. 2022;433:134357.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Shi D, Ren Y, Li L, Zhao Y, Zheng C, Yang X. The immune-chemo-embolization impact of temperature delicate gold nanomedicines in opposition to liver most cancers. Nano Res. 2022. https://doi.org/10.1007/s12274-022-4921-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Pol CB, Lim CS, Sirlin CB, McGrath TA, Salameh J-P, Bashir MR, Tang A, Singal AG, Costa AF, Fowler Okay, McInnes MDF. Accuracy of the liver imaging reporting and knowledge system in computed tomography and magnetic resonance picture evaluation of hepatocellular carcinoma or total malignancy-a systematic evaluation. Gastroenterology. 2019;156:976–86.

    Article 
    PubMed 

    Google Scholar
     

  • Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, Roberts LR, Heimbach JK. Analysis, staging, and administration of hepatocellular carcinoma: 2018 apply steering by the American Affiliation for the examine of liver illnesses. Hepatology. 2018;68:723–50.

    Article 
    PubMed 

    Google Scholar
     

  • Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E. Biomedical purposes of untethered cellular milli/microrobots. Proc IEEE. 2015;103:205–24.

    Article 
    CAS 

    Google Scholar
     

  • Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, Medina-Sanchez M, Schmidt OG. Medical imaging of microrobots: towards in vivo purposes. ACS Nano. 2020;14:10865–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landsman ML, Kwant G, Mook GA, Zijlstra WG. Gentle-absorbing properties, stability, and spectral stabilization of indocyanine inexperienced. J Appl Physiol. 1976;40:575–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kokudo N, Ishizawa T. Medical software of fluorescence imaging of liver most cancers utilizing indocyanine inexperienced. Liver Most cancers. 2012;1:15–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gotoh Okay, Yamada T, Ishikawa O, Takahashi H, Eguchi H, Yano M, Ohigashi H, Tomita Y, Miyamoto Y, Imaoka S. HOW I DO IT a novel image-guided surgical procedure of hepatocellular carcinoma by indocyanine inexperienced fluorescence imaging navigation. J Surg Oncol. 2009;100:75–9.

    Article 
    PubMed 

    Google Scholar
     

  • Ishizawa T, Fukushima N, Shibahara J, Masuda Okay, Tamura S, Aoki T, Hasegawa Okay, Beck Y, Fukayama M, Kokudo N. Actual-time identification of liver cancers by utilizing indocyanine inexperienced fluorescent imaging. Most cancers. 2009;115:2491–504.

    Article 
    PubMed 

    Google Scholar
     

  • Salis A, Rassu G, Budai-Szucs M, Benzoni I, Csanyi E, Berko S, Maestri M, Dionigi P, Porcu EP, Gavini E, Giunchedi P. Improvement of thermosensitive chitosan/glicerophospate injectable in situ gelling options for potential software in intraoperative fluorescence imaging and native remedy of hepatocellular carcinoma: a preliminary examine. Professional Opin Drug Deliv. 2015;12:1583–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Idee J-M, Guiu B. Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a evaluation. Crit Rev Oncol Hematol. 2013;88:530–49.

    Article 
    PubMed 

    Google Scholar
     

  • Oh MH, Lee N, Kim H, Park SP, Piao Y, Lee J, Jun SW, Moon WK, Choi SH, Hyeon T. Massive-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J Am Chem Soc. 2011;133:5508–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin Okay, Choi JW, Ko G, Baik S, Kim D, Park OK, Lee Okay, Cho HR, Han SI, Lee SH, et al. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures. Nat Commun. 2017;8:15807.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohandas G, Oskolkov N, McMahon MT, Walczak P, Janowski M. Porous tantalum and tantalum oxide nanoparticles for regenerative medication. Acta Neurobiol Exp. 2014;74:188–96.

    Article 

    Google Scholar
     

  • Lee KX, Shameli Okay, Yew YP, Teow S-Y, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Latest developments within the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical purposes. Int J Nanomed. 2020;15:275–300.

    Article 
    CAS 

    Google Scholar
     

  • Cui D, Jiang G, Luo F. Floor-modified gold nanoparticles for supply purposes. J Shenyang Pharm Univ. 2014;31(829–835):842.


    Google Scholar
     

  • Lei X, Shao C, Shou X, Shi Okay, Shi L, Zhao Y. Porous hydrogel arrays for hepatoma cell spheroid formation and drug resistance investigation. Bio-Des Manuf. 2021;4:842–50.

    Article 
    CAS 

    Google Scholar
     

  • Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Advantageous DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. Feasibility of drug screening with panels of human tumor cell strains utilizing a microculture tetrazolium assay. Can Res. 1988;48:589–601.

    CAS 

    Google Scholar
     

  • Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. Engineering most cancers microenvironments for in vitro 3-D tumor fashions. Mater Immediately. 2015;18:539–53.

    Article 
    CAS 

    Google Scholar
     

  • Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell tradition methods and their purposes in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12:207–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Aberasturi DJ, Henriksen-Lacey M, Litti L, Langer J, Liz-Marzan LM. Utilizing SERS tags to picture the three-dimensional construction of complicated cell fashions. Adv Funct Mater. 2020;30:1909655.

    Article 

    Google Scholar
     

  • Shao C, Liu Y, Chi J, Chen Z, Wang J, Zhao Y. Droplet microarray on patterned butterfly wing surfaces for cell spheroid tradition. Langmuir. 2019;35:3832–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo W, Yang Okay, Qin X, Luo R, Wang H, Huang R. Polyhydroxyalkanoates in tissue restore and regeneration. Eng Regen. 2022;3:24–40.


    Google Scholar
     

  • Shao C, Zhang Q, Kuang G, Fan Q, Ye F. Building and software of liver most cancers fashions in vitro. Eng Regen. 2022;3:310–22.


    Google Scholar
     

  • Henke E, Nandigama R, Ergun S. Extracellular matrix within the tumor microenvironment and its affect on most cancers remedy. Entrance Mol Biosci. 2020;6:160.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lou J, Mooney DJ. Chemical methods to engineer hydrogels for cell tradition. Nat Rev Chem. 2022;6:726–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Hydrogels and hydrogel-derived supplies for vitality and water sustainability. Chem Rev. 2020;120:7642–707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Wei X, Chen H, Wei H, Wang Y, Nan W, Zhang Q, Wen X. The examine of multinational of an in vivo tumor mannequin by three-dimensional cells tradition methods strategies and analysis of antitumor impact of biotin-conjugated pullulan acetate nanoparticles. Artif Cells Nanomed Biotechnol. 2019;47:123–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Huang W, Wu W-H, Xue B, Xiang D, Li Y, Qin M, Solar F, Wang W, Zhang W-B, Cao Y. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 2018;11:5556–65.

    Article 
    CAS 

    Google Scholar
     

  • Butcher DT, Alliston T, Weaver VM. A tense scenario: forcing tumour development. Nat Rev Most cancers. 2009;9:108–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang Y, Jeong J, DeVolder RJ, Cha C, Wang F, Tong YW, Kong H. A cell-instructive hydrogel to control malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials. 2011;32:9308–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim C-H, Suhito IR, Angeline N, Han Y, Son H, Luo Z, Kim T-H. Vertically coated graphene oxide micro-well arrays for extremely environment friendly most cancers spheroid formation and drug screening. Adv Healthc Mater. 2020;9:1901751.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Xiang Y, Zhang H, Cheng L, Mao X, An N, Zhang L, Zhou J, Deng L, Zhang Y, et al. A biomimetic 3D-self-forming strategy for microvascular scaffolds. Adv Sci. 2020;7:1903553.

    Article 
    CAS 

    Google Scholar
     

  • Lee S-Y, Teng Y, Son M, Ku B, Hwang HJ, Tergaonkar V, Chow PK-H, Lee DW, Nam D-H. Three-dimensional aggregated spheroid mannequin of hepatocellular carcinoma utilizing a 96-pillar/nicely plate. Molecules. 2021;26:4949.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, et al. Potential derivation of a residing organoid biobank of colorectal most cancers sufferers. Cell. 2015;161:933–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fong ELS, Toh TB, Lin X, Liu Z, Hooi L, Rashid MBMA, Benoukraf T, Chow EK-H, Huynh TH, Yu H. Technology of matched patient-derived xenograft in vitro-in vivo fashions utilizing 3D macroporous hydrogels for the examine of liver most cancers. Biomaterials. 2018;159:229–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Shao C, Chen H, Chen Z, Zhao Y. Hierarchical hydrogels with ordered micro-nano buildings for cancer-on-a-chip development. Analysis. 2021. https://doi.org/10.34133/2021/9845679.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles