Chakraborty E, Sarkar D. Rising therapies for hepatocellular carcinoma (HCC). Cancers. 2022;14:2798.
Bertuccio P, Turati F, Carioli G, Rodriguez T, La Vecchia C, Malvezzi M, Negri E. International traits and predictions in hepatocellular carcinoma mortality. J Hepatol. 2017;67:302–9.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71:209–49.
McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73:4–13.
Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. In: Sarkar D, Fisher PB, editors. Mechanisms and remedy of liver most cancers, vol. 149. Amsterdam: Elsevier; 2021. p. 1–61.
Zheng Z, Ma M, Han X, Li X, Huang J, Zhao Y, Liu H, Kang J, Kong X, Solar G, et al. Idarubicin-loaded biodegradable microspheres improve sensitivity to anti-PD1 immunotherapy in transcatheter arterial chemoembolization of hepatocellular carcinoma. Acta Biomater. 2023;157:337–51.
Demir T, Lee SS, Kaseb AO. Systemic remedy of liver most cancers. In: Fisher PB, Sarkar D, editors. Mechanisms and remedy of liver most cancers, vol. 149. Amsterdam: Elsevier; 2021. p. 257–94.
Holzwanger DJ, Madoff DC. Position of interventional radiology within the administration of hepatocellular carcinoma: present standing. Chin Clin Oncol. 2018;7:49.
Chen X-L, Yu H-C, Fan Q-G, Yuan Q, Jiang W-Okay, Rui S-Z, Zhou W-C. Comparative effectiveness of interventional therapeutic modalities for unresectable hepatocellular carcinoma: a scientific evaluation and community meta-analysis. Oncol Lett. 2022;24:1.
Liapi E, Geschwind J-FH. Intra-arterial therapies for hepatocellular carcinoma: the place can we stand? Ann Surg Oncol. 2010;17:1234–46.
Makary MS, Ramsell S, Miller E, Beal EW, Dowell JD. Hepatocellular carcinoma locoregional therapies: outcomes and future horizons. World J Gastroenterol. 2021;27:7462–79.
Shah RP, Brown KT, Sofocleous CT. Arterially directed therapies for hepatocellular carcinoma. Am J Roentgenol. 2011;197:W590–602.
Couri T, Pillai A. Targets and targets for customized remedy for HCC. Hep Intl. 2019;13:125–37.
Raoul J-L, Forner A, Bolondi L, Cheung TT, Kloeckner R, de Baere T. Up to date use of TACE for hepatocellular carcinoma therapy: how and when to make use of it primarily based on medical proof. Most cancers Deal with Rev. 2019;72:28–36.
Bruix J, Llovet JM. Prognostic prediction and therapy technique in hepatocellular carcinoma. Hepatology. 2002;35:519–24.
Chen Y-P, Zhang J-L, Zou Y, Wu Y-L. Latest advances on polymeric beads or hydrogels as embolization brokers for improved transcatheter arterial chemoembolization (TACE). Entrance Chem. 2019;7:408.
Llovet JM, Bruix J, Barcelona Clinic Liver Most cancers Group. Systematic evaluation of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37:429–42.
European Affiliation for the Examine of the Liver. EASL medical apply pointers: administration of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.
Chang Y, Jeong SW, Jang JY, Kim YJ. Latest updates of transarterial chemoembolilzation in hepatocellular carcinoma. Int J Mol Sci. 2020;21:8165.
Marelli L, Stigliano R, Triantos C, Senzolo M, Cholongitas E, Davies N, Tibballs J, Meyer T, Patch DW, Burroughs AK. Transarterial remedy for hepatocellular carcinoma: which approach is more practical? A scientific evaluation of cohort and randomized research. Cardiovasc Intervent Radiol. 2007;30:6–25.
Varela M, Actual MI, Burrel M, Forner A, Sala M, Brunet M, Ayuso C, Castells L, Montana X, Llovet JM, Bruix J. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46:474–81.
Pesapane F, Nezami N, Patella F, Geschwind JF. New ideas in embolotherapy of HCC. Med Oncol. 2017;34:1–8.
Coldwell DM, Stokes KR, Yakes WF. Embolotherapy: brokers, medical purposes, and strategies. Radiographics. 1994;14:623–43.
Jia G, Van Valkenburgh J, Chen AZ, Chen Q, Li J, Zuo C, Chen Okay. Latest advances and purposes of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. Wiley Interdiscip Rev-Nanomed Nanobiotechnol. 2022;14: e1749.
Perez-Lopez A, Martin-Sabroso C, Gomez-Lazaro L, Torres-Suarez AI, Aparicio-Blanco J. Embolization remedy with microspheres for the therapy of liver most cancers: state-of-the-art of medical translation. Acta Biomater. 2022;149:1–15.
Ho T-C, Chang C-C, Chan H-P, Chung T-W, Shu C-W, Chuang Okay-P, Duh T-H, Yang M-H, Tyan Y-C. Hydrogels: properties and purposes in biomedicine. Molecules. 2022;27:2902.
Jin S, Wan J, Meng L, Huang X, Guo J, Liu L, Wang C. Biodegradation and toxicity of protease/redox/pH stimuli-responsive PEGlated PMAA nanohydrogels for focusing on drug supply. ACS Appl Mater Interfaces. 2015;7:19843–52.
Wang C, Xue Y, Lin Okay, Lu J, Chang J, Solar J. The enhancement of bone regeneration by a mix of osteoconductivity and osteostimulation utilizing beta-CaSiO3/beta-Ca-3(PO4)(2) composite bioceramics. Acta Biomater. 2012;8:350–60.
Deng M, Nair LS, Nukavarapu SR, Jiang T, Kanner WA, Li X, Kumbar SG, Weikel AL, Krogman NR, Allcock HR, Laurencin CT. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials. 2010;31:4898–908.
Ko G, Choi JW, Lee N, Kim D, Hyeon T, Kim H-C. Latest progress in liquid embolic brokers. Biomaterials. 2022;287:121634.
Lencioni R, de Baere T, Soulen MC, Rilling WS, Geschwind J-FH. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: a scientific evaluation of efficacy and security knowledge. Hepatology. 2016;64:106–16.
Miyayama S, Matsui O, Yamashiro M, Ryu Y, Takata H, Takeda T, Aburano H, Shigenari N. Iodized oil accumulation within the hypovascular tumor portion of early-stage hepatocellular carcinoma after ultraselective transcatheter arterial chemoembolization. Hep Intl. 2007;1:451–9.
Chen C-S, Li F-Okay, Guo C-Y, Xiao J-C, Hu H-T, Cheng H-T, Zheng L, Zong D-W, Ma J-L, Jiang L, Li H-L. Tumor vascularity and lipiodol deposition as early radiological markers for predicting danger of illness development in sufferers with unresectable hepatocellular carcinoma after transarterial chemoembolization. Oncotarget. 2016;7:7241–52.
Wang Q, He Y, Shen M, Huang L, Ding L, Hu J, Dong Y, Fu H, Wang Q, Solar Y, et al. Precision embolism: biocompatible temperature-sensitive hydrogels as novel embolic supplies for each mainstream and peripheral vessels. Adv Funct Mater. 2021;31:2011170.
Liu M, Wang Y, Chen Y, Li L, Solar Y, Li Y, Yuan Y, Lu P, Zhang W, Pang P, et al. Solvent alternate induced in situ fashioned hydrogel as liquid embolic brokers. Adv Funct Mater. 2023;33:2305153.
Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Professional Rev Med Dev. 2011;8:607–26.
Nie J, Pei B, Wang Z, Hu Q. Building of ordered construction in polysaccharide hydrogel: a evaluation. Carbohydr Polym. 2019;205:225–35.
Solar Z, Track C, Wang C, Hu Y, Wu J. Hydrogel-based managed drug supply for most cancers therapy: a evaluation. Mol Pharm. 2020;17:373–91.
Ko G, Choi JW, Shin Okay, Kim YG, Kang T, Kim D, Lee N, Kim H-C, Hyeon T. In vivo sol-gel response of tantalum alkoxide for endovascular embolization. Adv Healthc Mater. 2022;11:2101908.
Li H, Qian Okay, Zhang H, Li L, Yan L, Geng S, Zhao H, Zhang H, Xiong B, Li Z, et al. Pickering gel emulsion of lipiodol stabilized by bushy nanogels for intra-artery embolization antitumor remedy. Chem Eng J. 2021;418:129534.
Go G, Yoo A, Kim Tien N, Nan M, Darmawan BA, Zheng S, Kang B, Kim C-S, Bang D, Lee S, et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization remedy of liver most cancers. Sci Adv. 2022;8: eabq8545.
Lam M, Reales-Calderon JA, Ow JR, Adriani G, Pavesi A. In vitro 3D liver tumor microenvironment fashions for immune cell remedy optimization. APL Bioeng. 2021;5:041502.
Gyles DA, Castro LD, Silva JOC Jr, Ribeiro-Costa RM. A evaluation of the designs and outstanding biomedical advances of pure and artificial hydrogel formulations. Eur Polym J. 2017;88:373–92.
Ma J, Wang B, Shao H, Zhang S, Chen X, Li F, Liang W. Hydrogels for localized chemotherapy of liver most cancers: a potential technique for improved and secure liver most cancers therapy. Drug Deliv. 2022;29:1457–76.
Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking methods of biomedical hydrogels. Biomater Sci. 2019;7:843–55.
Lu L, Yuan S, Wang J, Shen Y, Deng S, Xie L, Yang Q. The formation mechanism of hydrogels. Curr Stem Cell Res Ther. 2018;13:490–6.
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and properties of bodily cross-linked hydrogels primarily based on pure polymers. Polym Rev. 2023;63:574–612.
Zhang YS, Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356: eaaf3627.
Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh Okay, Ramesh S. Basic ideas of hydrogels: synthesis, properties, and their purposes. Polymers. 2020;12:2702.
Wang Y, Jiang W, Li J, Ahommed MS, Wang C, Ji X, Liu Y, Yang G, Ni Y, Lyu G. Zinc-ion engineered plant-based multifunctional hydrogels for versatile wearable pressure Sensors, Bio-electrodes and Zinc-ion hybrid capacitors. Chem Eng J. 2023;465:142917.
Pawar SN, Edgar KJ. Alginate derivatization: a evaluation of chemistry, properties and purposes. Biomaterials. 2012;33:3279–305.
Kumar A, Sah DK, Khanna Okay, Rai Y, Yadav AK, Ansari MS, Bhatt AN. A calcium and zinc composite alginate hydrogel for pre-hospital hemostasis and wound care. Carbohydr Polym. 2023;299:120186.
Bissantz C, Kuhn B, Stahl M. A medicinal chemist’s information to molecular interactions. J Med Chem. 2010;53:5061–84.
Li S, Gao Y, Jiang H, Duan L, Gao G. Powerful, sticky and remoldable hydrophobic affiliation hydrogel regulated by polysaccharide and sodium dodecyl sulfate as emulsifiers. Carbohyd Polym. 2018;201:591–8.
Demott CJ, Jones MR, Chesney CD, Yeisley DJ, Culibrk RA, Hahn MS, Grunlan MA. Extremely-high modulus hydrogels mimicking cartilage of the human physique. Macromol Biosci. 2022;22:2200283.
Fu L, Li L, Bian Q, Xue B, Jin J, Li J, Cao Y, Jiang Q, Li H. Cartilage-like protein hydrogels engineered through entanglement. Nature. 2023;618:740.
Khan MJ, Zhang J, Guo Q. Covalent/crystallite cross-linked co-network hydrogels: an environment friendly and easy technique for mechanically sturdy and hard hydrogels. Chem Eng J. 2016;301:92–102.
Hassan CM, Peppas NA. Construction and morphology of freeze/thawed PVA hydrogels. Macromolecules. 2000;33:2472–9.
Muir VG, Burdick JA. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem Rev. 2021;121:10908–49.
Zhang Z, Fu H, Li Z, Huang J, Xu Z, Lai Y, Qian X, Zhang S. Hydrogel supplies for sustainable water assets harvesting & therapy: synthesis, mechanism and purposes. Chem Eng J. 2022;439:135756.
Singh B, Pal L. Radiation crosslinking polymerization of sterculia polysaccharide-PVA-PVP for making hydrogel wound dressings. Int J Biol Macromol. 2011;48:501–10.
Sahajpal Okay, Shekhar S, Kumar A, Sharma B, Meena MK, Bhagi AK, Sharma S. Dynamic protein and polypeptide hydrogels primarily based on Schiff base co-assembly for biomedicine. J Mater Chem B. 2022;10:3173–98.
Mo C, Xiang L, Chen Y. Advances in injectable and self-healing polysaccharide hydrogel primarily based on the Schiff base response. Macromol Speedy Commun. 2021;42:2100025.
Huang Y, Mu L, Zhao X, Han Y, Guo B. Bacterial growth-induced tobramycin sensible launch self-healing hydrogel for pseudomonas aeruginosa-infected burn wound therapeutic. ACS Nano. 2022;16:13022–36.
Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD. Good hydrogels in tissue engineering and regenerative medication. Supplies. 2019;12:3323.
Fang W-W, Yang G-Y, Fan Z-H, Chen Z-C, Hu X-L, Zhan Z, Hussain I, Lu Y, He T, Tan B-E. Conjugated cross-linked phosphine as broadband gentle or sunlight-driven photocatalyst for large-scale atom switch radical polymerization. Nat Commun. 2023;14:2891.
Yu J, Wang Okay, Fan C, Zhao X, Gao J, Jing W, Zhang X, Li J, Li Y, Yang J, Liu W. An ultrasoft self-fused supramolecular polymer hydrogel for fully stopping postoperative tissue adhesion. Adv Mater. 2021;33:2008395.
Meng X, Edgar KJ. “Click on” reactions in polysaccharide modification. Prog Polym Sci. 2016;53:52–85.
Lueckgen A, Garske DS, Ellinghaus A, Desai RM, Stafford AG, Mooney DJ, Duda GN, Cipitria A. Hydrolytically-degradable click-crosslinked alginate hydrogels. Biomaterials. 2018;181:189–98.
Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, exercise regulation, and purposes. Chem Rev. 2019;119:4357–412.
Li Z, Lu F, Liu Y. A evaluation of the mechanism, properties, and purposes of hydrogels ready by enzymatic cross-linking. J Agric Meals Chem. 2023;71:10238–49.
Kim M, Kim H, Lee Y-s, Lee S, Kim S-E, Lee U-J, Jung S, Park C-G, Hong J, Doh J, et al. Novel enzymatic cross-linking-based hydrogel nanofilm caging system on pancreatic beta cell spheroid for long-term blood glucose regulation. Sci Adv. 2021;7: eabf7832.
Wei P, Yu X, Fang Y, Wang L, Zhang H, Zhu C, Cai J. Sturdy and hard cellulose hydrogels through resolution annealing and twin cross-linking. Small. 2023;19:2301204.
Yuan Y, Shen S, Fan D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound therapeutic: form adaptability, injectable self-healing property and enhanced adhesion. Biomaterials. 2021;276:120838.
Zhao L, Shi Z, Solar X, Yu Y, Wang X, Wang H, Li T, Zhang H, Zhang X, Wang F, et al. Pure dual-crosslinking bioadhesive hydrogel for corneal regeneration in large-size defects. Adv Healthc Mater. 2022;11:2201576.
Gosecka M, Gosecki M, Jaworska-Krych D. Hydrophobized hydrogels: development methods, properties, and biomedical purposes. Adv Funct Mater. 2023;33:2212302.
Narayanaswamy R, Torchilin VP. Hydrogels and their purposes in focused drug supply. Molecules. 2019;24:1117–50.
Zhao J, Wang L, Zhang H, Liao B, Li Y. Progress of analysis in in situ sensible hydrogels for native antitumor remedy: a evaluation. Pharmaceutics. 2028;2022:14.
Radu ER, Semenescu A, Voicu SI. Latest advances in stimuli-responsive doxorubicin supply methods for liver most cancers remedy. Polymers. 2022;14:5249.
Zhu J-Q, Wu H, Li Z-L, Xu X-F, Xing H, Wang M-D, Jia H-D, Liang L, Li C, Solar L-Y, et al. Responsive hydrogels primarily based on triggered click on reactions for liver most cancers. Adv Mater. 2022;34:2201651.
Mo C, Luo R, Chen Y. Advances within the stimuli-responsive injectable hydrogel for managed launch of medicine. Macromol Speedy Commun. 2022;43:2200007.
Hou S, Wang X, Park S, Jin X, Ma PX. Speedy Self-integrating, injectable hydrogel for tissue complicated regeneration. Adv Healthc Mater. 2015;4:1491–5.
Meng J, Yang X, Huang J, Tuo Z, Hu Y, Liao Z, Tian Y, Deng S, Deng Y, Zhou Z, et al. Ferroptosis-enhanced immunotherapy with an injectable dextran-chitosan hydrogel for the therapy of malignant ascites in hepatocellular carcinoma. Adv Sci. 2023;10:2300517.
Zhan J, Wu Y, Wang H, Liu J, Ma Q, Xiao Okay, Li Z, Li J, Luo F, Tan H. An injectable hydrogel with pH-sensitive and self-healing properties primarily based on 4armPEGDA and N-carboxyethyl chitosan for native therapy of hepatocellular carcinoma. Int J Biol Macromol. 2020;163:1208–22.
Wang X, Zhang HJ, Yang Y, Chen Y, Zhu X, You X. Biopolymer-based self-healing hydrogels: a brief evaluation. Big. 2023;16:100188.
Qu J, Zhao X, Ma PX, Guo B. pH-responsive self-healing injectable hydrogel primarily based on N-carboxyethyl chitosan for hepatocellular carcinoma remedy. Acta Biomater. 2017;58:168–80.
Zeng Z-M, Mo N, Zeng J, Ma F-C, Jiang Y-F, Huang H-S, Liao X-W, Zhu G-Z, Ma J, Peng T. Advances in postoperative adjuvant remedy for major liver most cancers. World J Gastrointest Oncol. 2022;14:1604–21.
Tang J, Zhang R, Guo M, Shao L, Liu Y, Zhao Y, Zhang S, Wu Y, Chen C. Nucleosome-inspired nanocarrier obtains encapsulation effectivity enhancement and unintended effects discount in chemotherapy by utilizing fullerenol assembled with doxorubicin. Biomaterials. 2018;167:205–15.
Mittra I, Pal Okay, Pancholi N, Shaikh A, Rane B, Tidke P, Kirolikar S, Khare NK, Agrawal Okay, Nagare H, Nair NK. Prevention of chemotherapy toxicity by brokers that neutralize or degrade cell-free chromatin. Ann Oncol. 2017;28:2119–27.
Wolinsky JB, Colson YL, Grinstaff MW. Native drug supply methods for most cancers therapy: gels, nanoparticles, polymeric movies, rods, and wafers. J Management Launch. 2012;159:14–26.
Majumder P, Baxa U, Walsh STR, Schneider JP. Design of a multicompartment hydrogel that facilitates time-resolved supply of mixture remedy and synergized killing of glioblastoma. Angew Chem-Int Ed. 2018;57:15040–4.
Kim DY, Kwon DY, Kwon JS, Park JH, Park SH, Oh HJ, Kim JH, Min BH, Park Okay, Kim MS. Synergistic anti-tumor exercise by way of combinational intratumoral injection of an in-situ injectable drug depot. Biomaterials. 2016;85:232–45.
Qi Y, Min H, Mujeeb A, Zhang Y, Han X, Zhao X, Anderson GJ, Zhao Y, Nie G. Injectable hexapeptide hydrogel for localized chemotherapy prevents breast most cancers recurrence. ACS Appl Mater Interfaces. 2018;10:6972–81.
Le Grazie M, Biagini MR, Tarocchi M, Polvani S, Galli A. Chemotherapy for hepatocellular carcinoma: the current and the longer term. World J Hepatol. 2017;9:907–20.
Varela-Lopez A, Battino M, Navarro-Hortal MD, Giampieri F, Forbes-Hernandez TY, Romero-Marquez JM, Collado R, Quiles JL. An replace on the mechanisms associated to cell demise and toxicity of doxorubicin and the protecting position of vitamins. Meals Chem Toxicol. 2019;134:110834.
Wan J, Geng S, Zhao H, Peng X, Zhou Q, Li H, He M, Zhao Y, Yang X, Xu H. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration. J Management Launch. 2016;235:328–36.
Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Surprising therapeutic results of cisplatin. Metallomics. 2019;11:1182–99.
Yao X, Panichpisal Okay, Kurtzman N, Nugent Okay. Cisplatin nephrotoxicity: a evaluation. Am J Med Sci. 2007;334:115–24.
Chen J, Wang D, Wang L-H, Liu W, Chiu A, Shariati Okay, Liu Q, Wang X, Zhong Z, Webb J, et al. An adhesive hydrogel with “load-sharing” impact as tissue bandages for drug and cell supply. Adv Mater. 2020;32:2001628.
Han Z, Li B, Wang J, Zhang X, Li Z, Dai L, Cao M, Jiang J. Norcantharidin inhibits SK-N-SH neuroblastoma cell progress by induction of autophagy and apoptosis. Technol Most cancers Res Deal with. 2017;16:33–44.
Li X-Y, Guan Q-X, Shang Y-Z, Wang Y-H, Lv S-W, Yang Z-X, Wang R, Feng Y-F, Li W-N, Li Y-J. Steel-organic framework IRMOFs coated with a temperature-sensitive gel delivering norcantharidin to deal with liver most cancers. World J Gastroenterol. 2021;27:4208–20.
Zhou Z-L, Yang Y-X, Ding J, Li Y-C, Miao Z-H. Triptolide: structural modifications, structure-activity relationships, bioactivities, medical growth and mechanisms. Nat Prod Rep. 2012;29:457–75.
Ling D, Xia H, Park W, Hackett MJ, Track C, Na Okay, Hui KM, Hyeon T. pH-sensitive nanoformulated triptolide as a focused therapeutic technique for hepatocellular carcinoma. ACS Nano. 2014;8:8027–39.
Zhao X, Liu X, Zhang P, Liu Y, Ran W, Cai Y, Wang J, Zhai Y, Wang G, Ding Y, Li Y. Injectable peptide hydrogel as intraperitoneal triptolide depot for the therapy of orthotopic hepatocellular carcinoma. Acta Pharm Sin B. 2019;9:1050–60.
Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, et al. The multifaceted position of curcumin in superior nanocurcumin type within the therapy and administration of power problems. Molecules. 2021;26:7109.
Hanafy NAN, Leporatti S, El-Kemary M. Mucoadhesive curcumin crosslinked carboxy methyl cellulose would possibly improve inhibitory effectivity for liver most cancers therapy. Mater Sci Eng C-Mater Biol Appl. 2020;116:111119.
Koka Okay, Verma A, Dwarakanath BS, Papineni RVL. Technological developments in exterior beam radiation remedy (EBRT): an indispensable software for most cancers therapy. Most cancers Manag Res. 2022;14:1421–9.
Baskar R, Lee KA, Yeo R, Yeoh Okay-W. Most cancers and radiation remedy: present advances and future instructions. Int J Med Sci. 2012;9:193–9.
Mohan V, Bruin NM, van de Kamer JB, Sonke JJ, Vogel WV. The growing potential of nuclear medication imaging for the analysis and discount of regular tissue toxicity from radiation remedies. Eur J Nucl Med Mol Imaging. 2021;48:3762–75.
Ho S, Lau WY, Leung TW, Johnson PJ. Inside radiation remedy for sufferers with major or metastatic hepatic most cancers: a evaluation. Most cancers. 1998;83:1894–907.
Lin WY, Tsai SC, Hsieh JF, Wang SJ. Results of Y-90-microspheres on liver tumors: comparability of intratumoral injection methodology and intra-arterial injection methodology. J Nucl Med. 2000;41:1892–7.
Hwang H, Kim KI, Kwon J, Kim BS, Jeong H-S, Jang SJ, Oh P-S, Park HS, Lim ST, Sohn M-H, Jeong H-J. I-131-labeled chitosan hydrogels for radioembolization: a preclinical examine in small animals. Nucl Med Biol. 2017;52:16–23.
Kennedy A. Radioembolization of hepatic tumors. J Gastrointest Oncol. 2014;5:178–89.
Lee IJ, Seong J. The optimum choice of radiotherapy therapy for hepatocellular carcinoma. Intestine Liver. 2012;6:139–48.
Karpov T, Postovalova A, Akhmetova D, Muslimov AR, Eletskaya E, V. Zyuzin M, Timin AS,. Common chelator-free radiolabeling of natural and inorganic-based nanocarriers with diagnostic and therapeutic isotopes for inner radiotherapy. Chem Mater. 2022. https://doi.org/10.1021/acs.chemmater.2c01507.
Peng C-L, Shih Y-H, Liang Okay-S, Chiang P-F, Yeh C-H, Tang IC, Yao C-J, Lee S-Y, Luo T-Y, Shieh M-J. Improvement of in situ forming thermosensitive hydrogel for radiotherapy mixed with chemotherapy in a mouse mannequin of hepatocellular carcinoma. Mol Pharm. 2013;10:1854–64.
Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Focused radionuclide remedy of human tumors. Int J Mol Sci. 2016;17:33.
Lee EJ, Chung HW, Jo J-H, So Y. Radioembolization for the therapy of major and metastatic liver cancers. Nucl Med Mol Imaging. 2019;53:367–73.
Fisher DR. Radiation security for yttrium-90-polymer composites (RadioGel (TM)) in remedy of strong tumors. Well being Phys. 2021;120:510–6.
Larson SM, Carrasquillo JA, Cheung N-KV, Press OW. Radioimmunotherapy of human tumours. Nat Rev Most cancers. 2015;15:347–60.
You J, Zhang R, Xiong C, Zhong M, Melancon M, Gupta S, Nick AM, Sood AK, Li C. Efficient photothermal chemotherapy utilizing doxorubicin-loaded gold nanospheres that concentrate on EphB4 receptors in tumors. Can Res. 2012;72:4777–86.
Xi D, Xiao M, Cao J, Zhao L, Xu N, Lengthy S, Fan J, Shao Okay, Solar W, Yan X, Peng X. NIR light-driving barrier-free group rotation in nanoparticles with an 88.3% photothermal conversion effectivity for photothermal remedy. Adv Mater. 2020;32:1907855.
Chen Q, Wang C, Zhan Z, He W, Cheng Z, Li Y, Liu Z. Close to-infrared dye certain albumin with separated imaging and remedy wavelength channels for imaging-guided photothermal remedy. Biomaterials. 2014;35:8206–14.
Zhou Z, Yan Y, Wang L, Zhang Q, Cheng Y. Melanin-like nanoparticles adorned with an autophagy-inducing peptide for environment friendly focused photothermal remedy. Biomaterials. 2019;203:63–72.
Cheng L, Zhang F, Wang S, Pan X, Han S, Liu S, Ma J, Wang H, Shen H, Liu H, Yuan Q. Activation of prodrugs by NIR-triggered launch of exogenous enzymes for locoregional chemo-photothermal remedy. Angew Chem-Int Ed. 2019;58:7728–32.
Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Natural molecule-based photothermal brokers: an increasing photothermal remedy universe. Chem Soc Rev. 2018;47:2280–97.
Dong Q, Wang X, Hu X, Xiao L, Zhang L, Track L, Xu M, Zou Y, Chen L, Chen Z, Tan W. Simultaneous software of photothermal remedy and an anti-inflammatory prodrug utilizing pyrene-aspirin-loaded gold nanorod graphitic nanocapsules. Angew Chem-Int Ed. 2018;57:177–81.
Jin R, Yang J, Zhao D, Hou X, Li C, Chen W, Zhao Y, Yin Z, Liu B. Hole gold nanoshells-incorporated injectable genetically engineered hydrogel for sustained chemo-photothermal remedy of tumor. J Nanobiotechnol. 2019;17:1–6.
Siregar S, Oktamuliani S, Saijo Y. A theoretical mannequin of laser heating carbon nanotubes. Nanomaterials. 2018;8:580.
Liao M-Y, Lai P-S, Yu H-P, Lin H-P, Huang C-C. Progressive ligand-assisted synthesis of NIR-activated iron oxide for most cancers theranostics. Chem Commun. 2012;48:5319–21.
Dang W, Chen W-C, Ju E, Xu Y, Li Okay, Wang H, Wang Okay, Lv S, Shao D, Tao Y, Li M. 3D printed hydrogel scaffolds combining glutathione depletion-induced ferroptosis and photothermia-augmented chemodynamic remedy for effectively inhibiting postoperative tumor recurrence. J Nanobiotechnol. 2022;20:266.
Huang S, Ma Z, Solar C, Zhou Q, Li Z, Wang S, Yan Q, Liu C, Hou B, Zhang C. An injectable thermosensitive hydrogel loaded with a theranostic nanoprobe for synergistic chemo-photothermal remedy for multidrug-resistant hepatocellular carcinoma. J Mater Chem B. 2022;10:2828–43.
Cai W, Gao H, Chu C, Wang X, Wang J, Zhang P, Lin G, Li W, Liu G, Chen X. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided most cancers remedy. ACS Appl Mater Interfaces. 2017;9:2040–51.
Deng Okay, Hou Z, Deng X, Yang P, Li C, Lin J. Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic remedy primarily based on a indocyanine-green-attached W18O49 nanostructure. Adv Funct Mater. 2015;25:7280–90.
Sohretoglu D, Huang S. Ganoderma lucidum polysaccharides as an anti-cancer agent. Anticancer Brokers Med Chem. 2018;18:667–74.
Xia Q-H, Lu C-T, Tong M-Q, Yue M, Chen R, Zhuge D-L, Yao Q, Xu H-L, Zhao Y-Z. Ganoderma lucidum polysaccharides improve the abscopal impact of photothermal remedy in hepatoma-bearing mice by way of immunomodulatory, anti-proliferative, pro-apoptotic and anti-angiogenic. Entrance Pharmacol. 2021;12:648708.
Noh S-H, Moon SH, Shin T-H, Lim Y, Cheon J. Latest advances of magneto-thermal capabilities of nanoparticles: from design ideas to biomedical purposes. Nano Immediately. 2017;13:61–76.
Hauser AK, Wydra RJ, Stocke NA, Anderson KW, Hilt JZ. Magnetic nanoparticles and nanocomposites for distant managed therapies. J Management Launch. 2015;219:76–94.
Johannsen M, Gneueckow U, Thiesen B, Taymoorian Okay, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, Wust P. Thermotherapy of prostate most cancers utilizing magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52:1653–62.
van Landeghem FKH, Maier-Hauff Okay, Jordan A, Hoffmann Okay-T, Gneveckow U, Scholz R, Thiesen B, Brueck W, von Deimling A. Publish-mortem research in glioblastoma sufferers handled with thermotherapy utilizing magnetic nanoparticles. Biomaterials. 2009;30:52–7.
Mueller S. Magnetic fluid hyperthermia remedy for malignant mind tumors-an moral dialogue. Nanomed-Nanotechnol Biol Med. 2009;5:387–93.
Pan J, Xu Y, Wu Q, Hu P, Shi J. Delicate magnetic hyperthermia-activated innate immunity for liver most cancers remedy. J Am Chem Soc. 2021;143:8116–28.
Qian Okay-Y, Track Y, Yan X, Dong L, Xue J, Xu Y, Wang B, Cao B, Hou Q, Peng W, et al. Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials. 2020;259:120299.
Chen S, Track Y, Yan X, Dong L, Xu Y, Xuan S, Shu Q, Cao B, Hu J, Xing H, et al. Injectable magnetic montmorillonite colloidal gel for the postoperative therapy of hepatocellular carcinoma. J Nanobiotechnol. 2022;20:381.
Yan X, Solar T, Track Y, Peng W, Xu Y, Luo G, Li M, Chen S, Fang W-W, Dong L, et al. In situ thermal-responsive magnetic hydrogel for multidisciplinary remedy of hepatocellular carcinoma. Nano Lett. 2022;22:2251–60.
Huang W, Ling S, Li C, Omenetto FG, Kaplan DL. Silkworm silk-based supplies and units generated utilizing bio-nanotechnology. Chem Soc Rev. 2018;47:6486–504.
Wang Y, Guo J, Zhou L, Ye C, Omenetto FG, Kaplan DL, Ling S. Design, fabrication, and performance of silk-based nanomaterials. Adv Funct Mater. 2018;28:1805305.
Seib FP, Pritchard EM, Kaplan DL. Self-assembling doxorubicin silk hydrogels for the focal therapy of major breast most cancers. Adv Funct Mater. 2013;23:58–65.
Ribeiro VP, Silva-Correia J, Goncalves C, Pina S, Radhouani H, Montonen T, Hyttinen J, Roy A, Oliveira AL, Reis RL, Oliveira JM. Quickly responsive silk fibroin hydrogels as a synthetic matrix for the programmed tumor cells demise. PLoS ONE. 2018;13: e0194441.
Zhang D, Chu Y, Qian H, Qian L, Shao J, Xu Q, Yu L, Li R, Zhang Q, Wu F, et al. Antitumor exercise of thermosensitive hydrogels packaging gambogic acid nanoparticles and tumor-penetrating peptide iRGD in opposition to gastric most cancers. Int J Nanomed. 2020;15:735–47.
Huan L, Liang L-H, He X-H. Position of microRNAs in inflammation-associated liver most cancers. Most cancers Biol Med. 2016;13:407–25.
Edmondson HA, Peters RL. Tumors of the liver: pathologic options. Semin Roentgenol. 1983;18:75–83.
Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, Pikarsky E, Zhu AX, Finn RS. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19:151–72.
Kirchhammer N, Trefny MP, Maur PAD, Laubli H, Zippelius A. Mixture most cancers immunotherapies: rising therapy methods tailored to the tumor microenvironment. Sci Transl Med. 2022;14: eabo3605.
Zhao Q, Wang Y, Zhao B, Chen H, Cai Z, Zheng Y, Zeng Y, Zhang D, Liu X. Neoantigen immunotherapeutic-gel mixed with TIM-3 blockade successfully restrains orthotopic hepatocellular carcinoma development. Nano Lett. 2022;22:2048–58.
Hu Y, Chen L, Liu M, Ma Z, Zhou C, Yao Z, Zhang S, Track C, Wang Z, Zhu X, et al. Multifunctional immunotherapeutic gel prevented postoperative recurrence of hepatocellular carcinoma. Chem Eng J. 2023;457:141124.
Shi D, Zhang H, Zhang H, Li L, Li S, Zhao Y, Zheng C, Nie G, Yang X. The synergistic blood-vessel-embolization of coagulation fusion protein with temperature delicate nanogels in interventional therapies on hepatocellular carcinoma. Chem Eng J. 2022;433:134357.
Liu Y, Shi D, Ren Y, Li L, Zhao Y, Zheng C, Yang X. The immune-chemo-embolization impact of temperature delicate gold nanomedicines in opposition to liver most cancers. Nano Res. 2022. https://doi.org/10.1007/s12274-022-4921-2.
van der Pol CB, Lim CS, Sirlin CB, McGrath TA, Salameh J-P, Bashir MR, Tang A, Singal AG, Costa AF, Fowler Okay, McInnes MDF. Accuracy of the liver imaging reporting and knowledge system in computed tomography and magnetic resonance picture evaluation of hepatocellular carcinoma or total malignancy-a systematic evaluation. Gastroenterology. 2019;156:976–86.
Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, Roberts LR, Heimbach JK. Analysis, staging, and administration of hepatocellular carcinoma: 2018 apply steering by the American Affiliation for the examine of liver illnesses. Hepatology. 2018;68:723–50.
Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E. Biomedical purposes of untethered cellular milli/microrobots. Proc IEEE. 2015;103:205–24.
Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, Medina-Sanchez M, Schmidt OG. Medical imaging of microrobots: towards in vivo purposes. ACS Nano. 2020;14:10865–93.
Landsman ML, Kwant G, Mook GA, Zijlstra WG. Gentle-absorbing properties, stability, and spectral stabilization of indocyanine inexperienced. J Appl Physiol. 1976;40:575–83.
Kokudo N, Ishizawa T. Medical software of fluorescence imaging of liver most cancers utilizing indocyanine inexperienced. Liver Most cancers. 2012;1:15–21.
Gotoh Okay, Yamada T, Ishikawa O, Takahashi H, Eguchi H, Yano M, Ohigashi H, Tomita Y, Miyamoto Y, Imaoka S. HOW I DO IT a novel image-guided surgical procedure of hepatocellular carcinoma by indocyanine inexperienced fluorescence imaging navigation. J Surg Oncol. 2009;100:75–9.
Ishizawa T, Fukushima N, Shibahara J, Masuda Okay, Tamura S, Aoki T, Hasegawa Okay, Beck Y, Fukayama M, Kokudo N. Actual-time identification of liver cancers by utilizing indocyanine inexperienced fluorescent imaging. Most cancers. 2009;115:2491–504.
Salis A, Rassu G, Budai-Szucs M, Benzoni I, Csanyi E, Berko S, Maestri M, Dionigi P, Porcu EP, Gavini E, Giunchedi P. Improvement of thermosensitive chitosan/glicerophospate injectable in situ gelling options for potential software in intraoperative fluorescence imaging and native remedy of hepatocellular carcinoma: a preliminary examine. Professional Opin Drug Deliv. 2015;12:1583–96.
Idee J-M, Guiu B. Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a evaluation. Crit Rev Oncol Hematol. 2013;88:530–49.
Oh MH, Lee N, Kim H, Park SP, Piao Y, Lee J, Jun SW, Moon WK, Choi SH, Hyeon T. Massive-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J Am Chem Soc. 2011;133:5508–15.
Shin Okay, Choi JW, Ko G, Baik S, Kim D, Park OK, Lee Okay, Cho HR, Han SI, Lee SH, et al. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures. Nat Commun. 2017;8:15807.
Mohandas G, Oskolkov N, McMahon MT, Walczak P, Janowski M. Porous tantalum and tantalum oxide nanoparticles for regenerative medication. Acta Neurobiol Exp. 2014;74:188–96.
Lee KX, Shameli Okay, Yew YP, Teow S-Y, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Latest developments within the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical purposes. Int J Nanomed. 2020;15:275–300.
Cui D, Jiang G, Luo F. Floor-modified gold nanoparticles for supply purposes. J Shenyang Pharm Univ. 2014;31(829–835):842.
Lei X, Shao C, Shou X, Shi Okay, Shi L, Zhao Y. Porous hydrogel arrays for hepatoma cell spheroid formation and drug resistance investigation. Bio-Des Manuf. 2021;4:842–50.
Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Advantageous DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. Feasibility of drug screening with panels of human tumor cell strains utilizing a microculture tetrazolium assay. Can Res. 1988;48:589–601.
Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. Engineering most cancers microenvironments for in vitro 3-D tumor fashions. Mater Immediately. 2015;18:539–53.
Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell tradition methods and their purposes in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12:207–18.
de Aberasturi DJ, Henriksen-Lacey M, Litti L, Langer J, Liz-Marzan LM. Utilizing SERS tags to picture the three-dimensional construction of complicated cell fashions. Adv Funct Mater. 2020;30:1909655.
Shao C, Liu Y, Chi J, Chen Z, Wang J, Zhao Y. Droplet microarray on patterned butterfly wing surfaces for cell spheroid tradition. Langmuir. 2019;35:3832–9.
Guo W, Yang Okay, Qin X, Luo R, Wang H, Huang R. Polyhydroxyalkanoates in tissue restore and regeneration. Eng Regen. 2022;3:24–40.
Shao C, Zhang Q, Kuang G, Fan Q, Ye F. Building and software of liver most cancers fashions in vitro. Eng Regen. 2022;3:310–22.
Henke E, Nandigama R, Ergun S. Extracellular matrix within the tumor microenvironment and its affect on most cancers remedy. Entrance Mol Biosci. 2020;6:160.
Lou J, Mooney DJ. Chemical methods to engineer hydrogels for cell tradition. Nat Rev Chem. 2022;6:726–44.
Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Hydrogels and hydrogel-derived supplies for vitality and water sustainability. Chem Rev. 2020;120:7642–707.
Chen H, Wei X, Chen H, Wei H, Wang Y, Nan W, Zhang Q, Wen X. The examine of multinational of an in vivo tumor mannequin by three-dimensional cells tradition methods strategies and analysis of antitumor impact of biotin-conjugated pullulan acetate nanoparticles. Artif Cells Nanomed Biotechnol. 2019;47:123–31.
Wu X, Huang W, Wu W-H, Xue B, Xiang D, Li Y, Qin M, Solar F, Wang W, Zhang W-B, Cao Y. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 2018;11:5556–65.
Butcher DT, Alliston T, Weaver VM. A tense scenario: forcing tumour development. Nat Rev Most cancers. 2009;9:108–22.
Liang Y, Jeong J, DeVolder RJ, Cha C, Wang F, Tong YW, Kong H. A cell-instructive hydrogel to control malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials. 2011;32:9308–15.
Kim C-H, Suhito IR, Angeline N, Han Y, Son H, Luo Z, Kim T-H. Vertically coated graphene oxide micro-well arrays for extremely environment friendly most cancers spheroid formation and drug screening. Adv Healthc Mater. 2020;9:1901751.
Zhang L, Xiang Y, Zhang H, Cheng L, Mao X, An N, Zhang L, Zhou J, Deng L, Zhang Y, et al. A biomimetic 3D-self-forming strategy for microvascular scaffolds. Adv Sci. 2020;7:1903553.
Lee S-Y, Teng Y, Son M, Ku B, Hwang HJ, Tergaonkar V, Chow PK-H, Lee DW, Nam D-H. Three-dimensional aggregated spheroid mannequin of hepatocellular carcinoma utilizing a 96-pillar/nicely plate. Molecules. 2021;26:4949.
van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, et al. Potential derivation of a residing organoid biobank of colorectal most cancers sufferers. Cell. 2015;161:933–45.
Fong ELS, Toh TB, Lin X, Liu Z, Hooi L, Rashid MBMA, Benoukraf T, Chow EK-H, Huynh TH, Yu H. Technology of matched patient-derived xenograft in vitro-in vivo fashions utilizing 3D macroporous hydrogels for the examine of liver most cancers. Biomaterials. 2018;159:229–40.
Zhu L, Shao C, Chen H, Chen Z, Zhao Y. Hierarchical hydrogels with ordered micro-nano buildings for cancer-on-a-chip development. Analysis. 2021. https://doi.org/10.34133/2021/9845679.