Moore, Ok. J. & Tabas, I. Macrophages within the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).
Tabas, I. Macrophage dying and faulty irritation decision in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).
Libby, P. The altering panorama of atherosclerosis. Nature 592, 524–533 (2021).
Chen, W. et al. Macrophage-targeted nanomedicine for the prognosis and therapy of atherosclerosis. Nat. Rev. Cardiol. 19, 228–249 (2022).
Bäck, M., Yurdagul, A., Tabas, I., Öörni, Ok. & Kovanen, P. T. Irritation and its decision in atherosclerosis: mediators and therapeutic alternatives. Nat. Rev. Cardiol. 16, 389–406 (2019).
Kasikara, C., Doran, A. C., Cai, B. & Tabas, I. The position of non-resolving irritation in atherosclerosis. J. Clin. Make investments. 128, 2713–2723 (2018).
Ridker, P. M. et al. Antiinflammatory remedy with canakinumab for atherosclerotic illness. N. Engl. J. Med. 377, 1119–1131 (2017).
Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic occasions. N. Engl. J. Med. 380, 752–762 (2019).
Tao, W. et al. siRNA nanoparticles concentrating on CaMKIIγ in lesional macrophages enhance atherosclerotic plaque stability in mice. Sci. Transl. Med. 12, eaay1063 (2020).
Kamaly, N. et al. Focused interleukin-10 nanotherapeutics developed with a microfluidic chip improve decision of irritation in superior atherosclerosis. ACS Nano 10, 5280–5292 (2016).
Fredman, G. et al. Focused nanoparticles containing the proresolving peptide Ac2-26 defend towards superior atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med. 7, 275ra20 (2015).
Hansson, G. Ok. & Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 12, 204–212 (2011).
Wang, Y., Wang, G. Z., Rabinovitch, P. S. & Tabas, I. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated irritation in macrophages. Circ. Res. 114, 421–433 (2014).
Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114, 1852–1866 (2014).
Libby, P., Lichtman, A. H. & Hansson, G. Ok. Immune effector mechanisms implicated in atherosclerosis: from mice to people. Immunity 38, 1092–1104 (2013).
Libby, P., Ridker, P. M. & Hansson, G. Ok. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).
Guo, J. et al. Cyclodextrin-derived intrinsically bioactive nanoparticles for therapy of acute and continual inflammatory illnesses. Adv. Mater. 31, 1904607 (2019).
Ouyang, J. et al. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer therapy. Proc. Natl Acad. Sci. USA 117, 28667–28677 (2020).
Hu, Ok. et al. Marriage of black phosphorus and Cu2+ as efficient photothermal brokers for PET-guided mixture most cancers remedy. Nat. Commun. 11, 2778 (2020).
Liu, C. et al. Pnictogens in medicinal chemistry: evolution from erstwhile medication to rising layered photonic nanomedicine. Chem. Soc. Rev. 50, 2260–2279 (2021).
Tao, W. et al. Rising two-dimensional monoelemental supplies (Xenes) for biomedical purposes. Chem. Soc. Rev. 48, 2891–2912 (2019).
Tao, W. et al. Black phosphorus nanosheets as a sturdy supply platform for most cancers theranostics. Adv. Mater. 29, 1603276 (2017).
Hou, J. et al. Treating acute kidney harm with antioxidative black phosphorus nanosheets. Nano Lett. 20, 1447–1454 (2020).
Fredman, G. et al. An imbalance between specialised pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7, 12859 (2016).
Fredman, G. et al. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc. Natl Acad. Sci. USA 111, 14530–14535 (2014).
Huang, X. et al. Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nat. Protoc. 17, 748–780 (2021).
Gao, C. et al. Remedy of atherosclerosis by macrophage-biomimetic nanoparticles through focused pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 11, 2622 (2020).
Cheng, J. et al. A concentrating on nanotherapy for stomach aortic aneurysms. J. Am. Coll. Cardiol. 72, 2591–2605 (2018).
Dou, Y. et al. Non-proinflammatory and responsive nanoplatforms for focused therapy of atherosclerosis. Biomaterials 143, 93–108 (2017).
Lee-Rueckert, M. et al. Acidic extracellular pH promotes accumulation of free ldl cholesterol in human monocyte-derived macrophages through inhibition of ACAT1 exercise. Atherosclerosis 312, 1–7 (2020).
Naghavi, M. et al. pH heterogeneity of human and rabbit atherosclerotic plaques; a brand new perception into detection of weak plaque. Atherosclerosis 164, 27–35 (2002).
Liang, X. et al. Extremely delicate H2O2-scavenging nano-bionic system for exact therapy of atherosclerosis. Acta Pharm. Sin. B 13, 372–389 (2023).
Hambleton, J., Weinstein, S. L., Lem, L. & Defranco, A. L. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc. Natl Acad. Sci. USA 93, 2774–2778 (1996).
Chen, W. et al. Stanene-based nanosheets for β-elemene supply and ultrasound-mediated mixture most cancers remedy. Angew. Chem. Int. Ed. 60, 7155–7164 (2021).
Ji, X. et al. Synthesis of ultrathin biotite nanosheets as an clever theranostic platform for mixture most cancers remedy. Adv. Sci. 6, 1901211 (2019).
Gerlach, B. D. et al. Resolvin D1 promotes the concentrating on and clearance of necroptotic cells. Cell Demise Differ. 27, 525–539 (2020).
Hosseini, Z. et al. Resolvin D1 enhances necroptotic cell clearance by means of selling macrophage fatty acid oxidation and oxidative phosphorylation. Arterioscler. Thromb. Vasc. Biol. 41, 1062–1075 (2021).
Kamaly, N. et al. Growth and in vivo efficacy of focused polymeric inflammation-resolving nanoparticles. Proc. Natl Acad. Sci. USA 110, 6506–6511 (2013).
Jo, E. Ok., Kim, J. Ok., Shin, D. M. & Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol. 13, 148–159 (2016).
Rathinam, V. A. Ok. & Fitzgerald, Ok. A. Inflammasome complexes: rising mechanisms and effector features. Cell 165, 792–800 (2016).
Wu, G. et al. Molecularly engineered macrophage‐derived exosomes with irritation tropism and intrinsic heme biosynthesis for atherosclerosis therapy. Angew. Chem. Int. Ed. 132, 4068–4074 (2020).
Lobatto, M. E., Fuster, V., Fayad, Z. A. & Mulder, W. J. M. Views and alternatives for nanomedicine within the administration of atherosclerosis. Nat. Rev. Drug Discov. 10, 835–852 (2011).
Duivenvoorden, R. et al. Nanoimmunotherapy to deal with ischaemic coronary heart illness. Nat. Rev. Cardiol. 16, 21–32 (2019).
Flores, A. M. et al. Nanoparticle remedy for vascular illnesses. Arterioscler. Thromb. Vasc. Biol. 39, 635–646 (2019).
Mulder, W. J. M., Jaffer, F. A., Fayad, Z. A. & Nahrendorf, M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci. Transl. Med. 6, 239sr1 (2014).
Lameijer, M. et al. Efficacy and security evaluation of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nat. Biomed. Eng. 2, 279–292 (2018).
Flores, A. M. et al. Professional-efferocytic nanoparticles are particularly taken up by lesional macrophages and forestall atherosclerosis. Nat. Nanotechnol. 15, 154–161 (2020).
Fredrikson, G. N. et al. Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler. Thromb. Vasc. Biol. 23, 879–884 (2003).
Gough, P. J., Gomez, I. G., Wille, P. T. & Raines, E. W. Macrophage expression of energetic MMP-9 induces acute plaque disruption in apoE-deficient mice. J. Clin. Make investments. 116, 59–69 (2006).
Kong, Y. Z. et al. Macrophage migration inhibitory issue induces MMP-9 expression: implications for destabilization of human atherosclerotic plaques. Atherosclerosis 178, 207–215 (2005).
Tang, J. et al. Inhibiting macrophage proliferation suppresses atherosclerotic plaque irritation. Sci. Adv. 1, e1400223 (2015).
Duivenvoorden, R. et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque irritation. Nat. Commun. 5, 3065 (2014).
Nakashiro, S. et al. Pioglitazone-incorporated nanoparticles forestall plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE−/− mice. Arterioscler. Thromb. Vasc. Biol. 36, 491–500 (2016).
Katsuki, S. et al. Nanoparticle-mediated supply of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation 129, 896–906 (2014).
Griendling, Ok. Ok. et al. Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling within the cardiovascular system. Circ. Res. 119, e39–e75 (2016).
Jung, S. H. et al. Spatiotemporal dynamics of macrophage heterogeneity and a possible perform of Trem2hello macrophages in infarcted hearts. Nat. Commun. 13, 4580 (2022).
Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis outlined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).
Kim, Ok. et al. Transcriptome evaluation reveals non-foamy moderately than foamy plaque macrophages are pro-inflammatory in atherosclerotic murine fashions. Circ. Res. 123, 1127–1142 (2018).
Liu, T. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of irritation associated illnesses. Nat. Commun. 11, 2788 (2020).
Ni, S. H. et al. Single-cell transcriptomic analyses of cardiac immune cells reveal that Rel-driven CD72-positive macrophages induce cardiomyocyte harm. Cardiovasc. Res. 118, 1303–1320 (2022).
Jin, Z.-H. et al. Radiotheranostic agent 64Cu-cyclam-RAFT-c(-RGDfK-)4 for administration of peritoneal metastasis in ovarian most cancers. Clin. Most cancers Res. 26, 6230–6241 (2020).
Jiang, Y. et al. Wi-fi, closed-loop, sensible bandage with built-in sensors and stimulators for superior wound care and accelerated therapeutic. Nat. Biotechnol. 41, 652–662 (2023).
Li, Y. et al. Single-cell transcriptome evaluation reveals dynamic cell populations and differential gene expression patterns in management and aneurysmal human aortic tissue. Circulation 142, 1374–1388 (2020).
Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional panorama and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).
McArdle, S. et al. Migratory and dancing macrophage subsets in atherosclerotic lesions. Circ. Res. 125, 1038–1051 (2019).