20.5 C
New York
Friday, October 11, 2024

Resolvin D1 supply to lesional macrophages utilizing antioxidative black phosphorus nanosheets for atherosclerosis therapy


  • Moore, Ok. J. & Tabas, I. Macrophages within the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabas, I. Macrophage dying and faulty irritation decision in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Libby, P. The altering panorama of atherosclerosis. Nature 592, 524–533 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. Macrophage-targeted nanomedicine for the prognosis and therapy of atherosclerosis. Nat. Rev. Cardiol. 19, 228–249 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bäck, M., Yurdagul, A., Tabas, I., Öörni, Ok. & Kovanen, P. T. Irritation and its decision in atherosclerosis: mediators and therapeutic alternatives. Nat. Rev. Cardiol. 16, 389–406 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasikara, C., Doran, A. C., Cai, B. & Tabas, I. The position of non-resolving irritation in atherosclerosis. J. Clin. Make investments. 128, 2713–2723 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ridker, P. M. et al. Antiinflammatory remedy with canakinumab for atherosclerotic illness. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic occasions. N. Engl. J. Med. 380, 752–762 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, W. et al. siRNA nanoparticles concentrating on CaMKIIγ in lesional macrophages enhance atherosclerotic plaque stability in mice. Sci. Transl. Med. 12, eaay1063 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamaly, N. et al. Focused interleukin-10 nanotherapeutics developed with a microfluidic chip improve decision of irritation in superior atherosclerosis. ACS Nano 10, 5280–5292 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fredman, G. et al. Focused nanoparticles containing the proresolving peptide Ac2-26 defend towards superior atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med. 7, 275ra20 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansson, G. Ok. & Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 12, 204–212 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Wang, G. Z., Rabinovitch, P. S. & Tabas, I. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated irritation in macrophages. Circ. Res. 114, 421–433 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114, 1852–1866 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Libby, P., Lichtman, A. H. & Hansson, G. Ok. Immune effector mechanisms implicated in atherosclerosis: from mice to people. Immunity 38, 1092–1104 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Libby, P., Ridker, P. M. & Hansson, G. Ok. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, J. et al. Cyclodextrin-derived intrinsically bioactive nanoparticles for therapy of acute and continual inflammatory illnesses. Adv. Mater. 31, 1904607 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ouyang, J. et al. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer therapy. Proc. Natl Acad. Sci. USA 117, 28667–28677 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Ok. et al. Marriage of black phosphorus and Cu2+ as efficient photothermal brokers for PET-guided mixture most cancers remedy. Nat. Commun. 11, 2778 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Pnictogens in medicinal chemistry: evolution from erstwhile medication to rising layered photonic nanomedicine. Chem. Soc. Rev. 50, 2260–2279 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, W. et al. Rising two-dimensional monoelemental supplies (Xenes) for biomedical purposes. Chem. Soc. Rev. 48, 2891–2912 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, W. et al. Black phosphorus nanosheets as a sturdy supply platform for most cancers theranostics. Adv. Mater. 29, 1603276 (2017).

    Article 

    Google Scholar
     

  • Hou, J. et al. Treating acute kidney harm with antioxidative black phosphorus nanosheets. Nano Lett. 20, 1447–1454 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fredman, G. et al. An imbalance between specialised pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7, 12859 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fredman, G. et al. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc. Natl Acad. Sci. USA 111, 14530–14535 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, X. et al. Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nat. Protoc. 17, 748–780 (2021).

    Article 

    Google Scholar
     

  • Gao, C. et al. Remedy of atherosclerosis by macrophage-biomimetic nanoparticles through focused pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 11, 2622 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, J. et al. A concentrating on nanotherapy for stomach aortic aneurysms. J. Am. Coll. Cardiol. 72, 2591–2605 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dou, Y. et al. Non-proinflammatory and responsive nanoplatforms for focused therapy of atherosclerosis. Biomaterials 143, 93–108 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee-Rueckert, M. et al. Acidic extracellular pH promotes accumulation of free ldl cholesterol in human monocyte-derived macrophages through inhibition of ACAT1 exercise. Atherosclerosis 312, 1–7 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naghavi, M. et al. pH heterogeneity of human and rabbit atherosclerotic plaques; a brand new perception into detection of weak plaque. Atherosclerosis 164, 27–35 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, X. et al. Extremely delicate H2O2-scavenging nano-bionic system for exact therapy of atherosclerosis. Acta Pharm. Sin. B 13, 372–389 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hambleton, J., Weinstein, S. L., Lem, L. & Defranco, A. L. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc. Natl Acad. Sci. USA 93, 2774–2778 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. et al. Stanene-based nanosheets for β-elemene supply and ultrasound-mediated mixture most cancers remedy. Angew. Chem. Int. Ed. 60, 7155–7164 (2021).

    Article 

    Google Scholar
     

  • Ji, X. et al. Synthesis of ultrathin biotite nanosheets as an clever theranostic platform for mixture most cancers remedy. Adv. Sci. 6, 1901211 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gerlach, B. D. et al. Resolvin D1 promotes the concentrating on and clearance of necroptotic cells. Cell Demise Differ. 27, 525–539 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosseini, Z. et al. Resolvin D1 enhances necroptotic cell clearance by means of selling macrophage fatty acid oxidation and oxidative phosphorylation. Arterioscler. Thromb. Vasc. Biol. 41, 1062–1075 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamaly, N. et al. Growth and in vivo efficacy of focused polymeric inflammation-resolving nanoparticles. Proc. Natl Acad. Sci. USA 110, 6506–6511 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo, E. Ok., Kim, J. Ok., Shin, D. M. & Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol. 13, 148–159 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rathinam, V. A. Ok. & Fitzgerald, Ok. A. Inflammasome complexes: rising mechanisms and effector features. Cell 165, 792–800 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, G. et al. Molecularly engineered macrophage‐derived exosomes with irritation tropism and intrinsic heme biosynthesis for atherosclerosis therapy. Angew. Chem. Int. Ed. 132, 4068–4074 (2020).

    Article 

    Google Scholar
     

  • Lobatto, M. E., Fuster, V., Fayad, Z. A. & Mulder, W. J. M. Views and alternatives for nanomedicine within the administration of atherosclerosis. Nat. Rev. Drug Discov. 10, 835–852 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duivenvoorden, R. et al. Nanoimmunotherapy to deal with ischaemic coronary heart illness. Nat. Rev. Cardiol. 16, 21–32 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flores, A. M. et al. Nanoparticle remedy for vascular illnesses. Arterioscler. Thromb. Vasc. Biol. 39, 635–646 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulder, W. J. M., Jaffer, F. A., Fayad, Z. A. & Nahrendorf, M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci. Transl. Med. 6, 239sr1 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lameijer, M. et al. Efficacy and security evaluation of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nat. Biomed. Eng. 2, 279–292 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flores, A. M. et al. Professional-efferocytic nanoparticles are particularly taken up by lesional macrophages and forestall atherosclerosis. Nat. Nanotechnol. 15, 154–161 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fredrikson, G. N. et al. Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler. Thromb. Vasc. Biol. 23, 879–884 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gough, P. J., Gomez, I. G., Wille, P. T. & Raines, E. W. Macrophage expression of energetic MMP-9 induces acute plaque disruption in apoE-deficient mice. J. Clin. Make investments. 116, 59–69 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, Y. Z. et al. Macrophage migration inhibitory issue induces MMP-9 expression: implications for destabilization of human atherosclerotic plaques. Atherosclerosis 178, 207–215 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, J. et al. Inhibiting macrophage proliferation suppresses atherosclerotic plaque irritation. Sci. Adv. 1, e1400223 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duivenvoorden, R. et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque irritation. Nat. Commun. 5, 3065 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Nakashiro, S. et al. Pioglitazone-incorporated nanoparticles forestall plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE−/− mice. Arterioscler. Thromb. Vasc. Biol. 36, 491–500 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katsuki, S. et al. Nanoparticle-mediated supply of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation 129, 896–906 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griendling, Ok. Ok. et al. Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling within the cardiovascular system. Circ. Res. 119, e39–e75 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, S. H. et al. Spatiotemporal dynamics of macrophage heterogeneity and a possible perform of Trem2hello macrophages in infarcted hearts. Nat. Commun. 13, 4580 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis outlined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Ok. et al. Transcriptome evaluation reveals non-foamy moderately than foamy plaque macrophages are pro-inflammatory in atherosclerotic murine fashions. Circ. Res. 123, 1127–1142 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of irritation associated illnesses. Nat. Commun. 11, 2788 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, S. H. et al. Single-cell transcriptomic analyses of cardiac immune cells reveal that Rel-driven CD72-positive macrophages induce cardiomyocyte harm. Cardiovasc. Res. 118, 1303–1320 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Z.-H. et al. Radiotheranostic agent 64Cu-cyclam-RAFT-c(-RGDfK-)4 for administration of peritoneal metastasis in ovarian most cancers. Clin. Most cancers Res. 26, 6230–6241 (2020).

  • Jiang, Y. et al. Wi-fi, closed-loop, sensible bandage with built-in sensors and stimulators for superior wound care and accelerated therapeutic. Nat. Biotechnol. 41, 652–662 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Single-cell transcriptome evaluation reveals dynamic cell populations and differential gene expression patterns in management and aneurysmal human aortic tissue. Circulation 142, 1374–1388 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional panorama and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McArdle, S. et al. Migratory and dancing macrophage subsets in atherosclerotic lesions. Circ. Res. 125, 1038–1051 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles